Как получить постоянное напряжение из переменного. Отличие переменного тока от постоянного Зависимость пульсаций от емкости конденсатора

За одинаковые интервалы времени проходит одинаковое количество заряженных частиц. А вот в переменном токе количество этих частиц за одинаковые интервалы времени всегда разное.

А вот теперь можно преступать непосредственно к преобразованию переменного тока в постоянный, в этом нам поможет устройство под названием «диодный мост». Диодный мост или мостовая схема - одно из самых распространённых устройств для выпрямления переменного тока.
Изначально она была разработана с применением радиоламп, но считалась сложным и дорогим решением, вместо неё применялась более примитивная схема со сдвоенной вторичной обмоткой в питающем выпрямитель трансформаторе. Сейчас, когда полупроводники очень дёшевы, в большинстве случаев применяется именно мостовая схема. Но использование данной схемы не гарантирует 100% выпрямления тока, поэтому в схему можно дополнить фильтром на конденсаторе, а также, возможно, дросселем и стабилизатором напряжения. Теперь, на выходе нашей схемы, как результат мы получаем постоянный ток

Обратите внимание

Работа с электричеством всегда опасна! Крайне не желательно использование Не заизолированных проводников, окислившихся контактов и источников питания находящихся в аварийном состоянии!

Для получения переменного тока может быть использован генератор на постоянных магнитах. Такое устройство генерирует не промышленное напряжение 220 В, а низкое переменное напряжение по трем фазам, которое впоследствии может быть выпрямлено и подано на выход в виде постоянного тока, пригодного для зарядки батарей 12 В.

Инструкция

Статор изготовьте из шести катушек медного провода, залитых эпоксидной смолой. Корпус статора закрепите цапфами, чтобы он не вращался. Провода от катушек подключите к выпрямителю, который будет производить впоследствии ток, необходимый для зарядки батарей. Для того чтобы избежать перегрева, прикрепите выпрямитель к алюминиевому радиатору.

Магнитные роторы закрепите на составной конструкции, вращающейся на оси. Задний ротор установите за статором. Передний ротор будет находиться снаружи, он крепится к заднему ротору посредством длинных спиц, пропущенных через центральное отверстие статора. Если вы планируете использовать генератор на постоянных магнитах с ветряком, на этих же спицах смонтируйте лопасти ветряка. Лопасти будут вращать роторы, и таким образом перемещать магниты вдоль катушек. Переменное магнитное поле роторов создает ток в катушках.

Поскольку генератор на постоянных магнитах спроектирован для совместного использования с небольшим ветрогенератором, предусмотрите следующие узлы: мачту, выполненную в виде стальной трубы, закрепленной тросами; вращающуюся головку, установленную на верхушке мачты; хвостовик для поворота ветряка; лопасти.

Катушки для использования в генераторе намотайте для развития больших более толстым проводом, при этом катушка должна содержать небольшое число витков. Однако учтите, что при слишком малых генератор на постоянных магнитах не будет. Для использования генератора как на большой, так и на малой скорости следует менять способ соединения катушек (со «звезды» на «треугольник» и наоборот). «Звезда» будет хорошо работать при малом ветре, «треугольник» - при большом.

При устройстве крепления магнитов обращайте внимание на то, что они не должны отделяться от посадочного места. Болтающийся магнит будет распарывать корпус статора и необратимо повредит генератор.

При установке ротора и статора оставьте между ними зазор в 1 мм. При тяжелых условиях работы этот зазор следует увеличить.

Еще один технологический момент – лопасти крепите не к внешнему ротору, а только на спицы. При этом держите генератор так, чтобы его ось вращения располагалась вертикально, а не горизонтально.

Видео по теме

Источники:

  • Генератор на постоянных магнитах своими руками

Для питания большинства радиоэлектронных устройств необходим постоянный ток. В то же время электрогенераторы и электросети являются поставщиками переменного тока. Для преобразования необходим сетевой блок питания, который собрать самостоятельно.

Вам понадобится

  • - трансформатор;
  • - диоды ламповые или полупроводниковые;
  • - дроссель;
  • - электролитические конденсаторы;
  • - измерительные приборы;
  • - принадлежности для пайки и монтажа.

Инструкция

Сетевой блок питания состоит из трех основных частей: , выпрямителя и сглаживающего фильтра. Если вам требуется напряжение, приблизительно равное сетевому, то можно обойтись и без трансформатора, просто выпрямив напряжение . Но такой блок питания является опасным, поскольку на его выходе окажется полное сетевое напряжение. Гальваническая развязка с электросетью в данном случае отсутствует. К тому же трансформатор позволяет получить необходимое напряжение, которое может быть выше или ниже сетевого, а также несколько напряжений, что иногда тоже бывает необходимо.

Подберите трансформатор, дающий на выходе необходимое вам напряжение. При этом первичная обмотка рассчитана на напряжение имеющегося у вас источника тока (генератора или электросети).

Подключите к выходной обмотке полупроводниковый диод так, как показано на . Вы получите простейший однополупериодный выпрямитель. На его выходе - ток, частота которого в 2 раза ниже частоты электросети, поскольку у вас второй полупериод пропадает. Но для питания некоторых электронных схем такой вариант вполне приемлем.

Значительно более совершенными являются двухполупериодные выпрямители, у которых частота пульсаций тока равна частоте питающей электросети. В этом случае выпрямляются оба полупериода питающего напряжения. Если ваш трансформатор имеет выходную обмотку со средней точкой, вы можете собрать устройство по схеме 2.

На выходе любого выпрямителя вы получите не постоянное, а пульсирующее напряжение. Его необходимо сгладить. Для этого применяются LC или RC фильтры. Они состоят из электролитических конденсаторов большой емкости, между которыми включен дроссель. Иногда дроссель можно заменить мощным резистором. Обязательно оснастите свой блок питания таким фильтром.

Видео по теме

Полезный совет

В блоках питания могут применяться как ламповые, так и транзисторные диоды.

Для питания устройств, чувствительных к колебаниям напряжения, применяется дополнительный узел, называемый стабилизатором.

Совет 4: В чем разница между постоянным и переменным током

Современный мир уже сложно представить без электричества. Освещение помещений, работа бытовых приборов, компьютеров, телевизоров – все это давно стало привычными атрибутами жизни человека. Но одни электроприборы питаются от переменного тока, тогда как другие – от постоянного.

Электрический ток представляет собой направленный поток электронов от одного полюса источника тока к другому. Если это направление постоянно и не меняется во времени, говорят о постоянном токе. Один вывод источника тока при этом считается плюсовым, второй – минусовым. Принято считать, что ток течет от плюса к минусу.

Классическим примером источника постоянного тока является обычная пальчиковая . Такие батарейки широко применяются в качестве источника питания в малогабаритной электронной аппаратуре – например, в пультах дистанционного управления, в фотоаппаратах, радиоприемниках и т.д. и т.п.

Переменный ток, в свою очередь, характеризуется тем, что периодически меняет свое направление. Например, в России принят стандарт, согласно которому напряжение в электрической сети равно 220 В, а частота тока составляет 50 Гц. Именно второй параметр и характеризует, с какой частотой изменяется направление электрического тока. Если частота тока равна 50 Гц, то он меняет свое направление 50 раз в секунду.

Значит ли это, что в обычной электрической , имеющей два контакта, периодически меняются плюс с минусом? То есть сначала на одном контакте плюс, на другом минус, потом наоборот и т.д. и т.п.? На самом деле все обстоит немного иначе. Электрические розетки имеют два вывода: фазовый и заземляющий. Обычно их называют «фазой» и « ». Заземляющий вывод безопасен, напряжения на нем нет. На фазовом же выводе с частотой 50 Гц в секунду меняются плюс и минус. Если коснуться « », ничего не произойдет. Фазового же провода лучше не касаться, так как он всегда находится под напряжением 220 В.

Одни приборы питаются от постоянного тока, другие от переменного. Зачем вообще потребовалось такое разделение? На самом деле большинство электронных приборов используют именно постоянное напряжение, даже если включаются в сеть переменного тока. В этом случае переменный ток преобразуется в постоянный в выпрямителе, в простейшем случае состоящем из диода, срезающего одну полуволну, и конденсатора для сглаживания пульсаций.

Переменный же ток используется только потому, что его очень удобно передавать на большие расстояния, потери в этом случае сводятся к минимуму. Кроме того, он легко поддается трансформации – то есть изменению напряжения. Постоянный ток трансформировать нельзя. Чем выше напряжение, тем ниже потери при передаче переменного тока, поэтому на магистральных линиях напряжение достигает нескольких десятков, а то и сотен тысяч вольт. Для подачи в населенные пункты высокое напряжение снижается на подстанциях, в результате в дома поступает уже достаточно низкое напряжение 220 В.

В разных странах приняты неодинаковые стандарты питающего напряжения. Так, если в европейских странах это 220 В, то в США – 110 В. Интересен и тот факт, что знаменитый изобретатель Томас Эдисон не смог в свое время оценить все преимущества переменного тока и отстаивал необходимость использования в электрических сетях именно постоянного тока. Лишь позже он был вынужден признать, что ошибся.

Для проверки работы отдельных блоков бытовых приборов домашнему мастеру может понадобиться напряжение 12 вольт как постоянного, так и переменного тока. Подробно разберем оба случая, но вначале необходимо рассмотреть еще одну величину электроэнергии - мощность, которая характеризует способность устройства надежно совершить работу.

Если мощности источника будет недостаточно, то он не выполнит задачу. К примеру, блок питания компьютера и аккумулятор автомобиля выдают 12 вольт. Токи нагрузки у компьютера редко превышают значения 20 ампер, а стартерный ток аккумулятора автомобиля больше 200 А.

Автомобильный аккумулятор обладает большим резервом мощности для задач компьютера, а вот блок питания ПК при таком же напряжении 12 вольт абсолютно не пригоден для раскрутки стартера, он просто сгорит.

Способы получения постоянного напряжения

Из гальванических элементов (батареек)

Промышленность выпускает круглые батарейки различных габаритов (зависят от мощности) с напряжением 1,5 вольта. Если взять 8 штук, то из них при последовательном подключении как раз получится 12 вольт.


Соединять между собой выводы батареек надо поочередно «плюсом» предыдущей к «минусу» последующей. Напряжение 12 вольт будет между первым и последним выводами, а промежуточные значения, например, 3, 6 или 9 вольт можно замерить на двух, четырех, шести батарейках.

Емкости элементов не должны отличаться, иначе мощность схемы будет уменьшена ослабленной батарейкой. Для таких устройств желательно применять все элементы однотипной серии с общей датой изготовления. Ток нагрузки от всех 8 батареек, собранных последовательно, соответствует величине, указанной для одного элемента.

Если возникнет необходимость подключения такой батареи к нагрузке, в два раза превышающей номинальную величину источника, то потребуется создать еще одну подобную конструкцию и обе батареи подключить параллельно, соединив между собой их однополярные выводы: «+» к «+», а «-» к «-».

Из малогабаритных акккумуляторов

Никель-кадмиевые аккумуляторы выпускаются с напряжением 1,2 вольта. Чтобы получить от них 12 вольт понадобится 10 элементов соединять последовательно, как в рассмотренной перед этим схеме.


По такому же принципу собирают батарею из никель-металл-гидридных АКБ.

Аккумуляторная батарея используется для более длительной работы, чем из обычных гальванических элементов: АКБ можно подзаряжать и перезаряжать многократно при необходимости.

От блоков питания, работающих на переменном токе

Многие бытовые приборы имеют встроенную электронику, которая питается от выпрямленного напряжения, получаемого в результате преобразования 220 вольт. Блоки питания компьютера, ноутбука как раз выдают 12 вольт выпрямленного и .


Достаточно подключиться к соответствующим клеммам выходного разъема и запитать блок питания, чтобы получить от него 12 вольт.

Аналогичным образом можно воспользоваться блоками питания старых радиоприемников, магнитофонов и устаревших телевизоров.

Кроме того, можно самостоятельно собрать блок питания для постоянного тока, выбрав для него подходящую схему. Наиболее распространены , преобразующие 220 вольт во вторичное напряжение, которое выпрямляется диодным мостом, сглаживается конденсатором и регулируется транзистором с помощью подстроечного резистора.


Подобных схем можно найти много. В них удобно включать стабилизаторные устройства.

Способы получения переменного напряжения

Посредством трансформатора

Самым доступным методом считается применение понижающего трансформатора, который уже показан на предыдущей схеме. Промышленность уже давно выпускает такие устройства для различных целей.

Однако домашнему мастеру совсем не сложно сделать трансформатор для своих нужд из старых конструкций.

Для подключения трансформатора к сети 220 на первичную обмотку следует подавать питание через защиту, вполне можно обойтись проверенным предохранителем, хотя автоматический выключатель лучше подойдет для этих целей.


Вся схема вторичной нагрузки должна быть собрана заранее и проверена. Резерв мощности трансформатора около 30% позволит длительно его эксплуатировать без перегрева изоляции.

Другие методы

Технически возможно получить 12 вольт переменного тока от генератора, который приводится во вращение каким-либо двигателем или за счет преобразования постоянного тока инвертором. Однако эти способы более подходят для промышленных установок и отличаются сложной конструкцией. Поэтому в быту практически не используются.

Электрический ток- это направленное или упорядоченное движение заряженных частиц: электронов в металлах, в электролитах - ионов, а в газах - электронов и ионов. Электрический ток может быть как постоянным, так и переменным.

Определение постоянного электрического тока, его источники

Постоянный ток (DC, по-английски Direct Current) - это электрический ток, у которого свойства и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Постоянный ток используется в автомобилях и в домах, в многочисленных электронных приборах: ноутбуки, компьютеры, телевизоры и т. д. Перемеренный электрический ток из розетки преобразуется в постоянный при помощи блока питания или трансформатора напряжения с выпрямителем.

Любой электроинструмент, устройство или прибор, работающие от батареек так же являются потребителями постоянного тока, потому что батарея или аккумулятор- это исключительно источники постоянного тока, который при необходимости преобразуется в переменный с использованием специальных преобразователей (инверторов).

Принцип работы переменного тока

Переменный ток (AC по-английски Alternating Current)- это электрический ток, который изменяется по величине и направлению с течением времени. На электроприборах условно обозначается отрезком синусоиды « ~ ».
Иногда после синусоиды могут указываться характеристики переменного тока - частота, напряжение, число фаз.

Переменный ток может быть как одно- , так и трёхфазным, для которого мгновенные значения тока и напряжения меняются по гармоническому закону.

Основные характеристики переменного тока - действующее значение напряжения и частота.

Обратите внимание , как на левом графике для однофазного тока меняется направление и величина напряжения с переходом в ноль за период времени Т, а на втором графике для трехфазного тока существует смещение трех синусоид на одну третью периода. На правом графике 1 фаза обозначена буквой «а», а вторая буквой «б». Хорошо известно, что в домашней розетке 220 Вольт. Но мало кто знает, что это действующие значение переменного напряжения, но амплитудное или максимальное значение будет больше на корень из двух, т.е будет равно 311 Вольт.

Таким образом, если у постоянного тока величина напряжения и направление не изменяются в течении времени, то у переменного тока- напряжение постоянно меняется по величине и направлению (график ниже нуля это обратное направление).

И так мы подошли к понятию частота — это отношение числа полных циклов (периодов) к единице времени периодически меняющегося электрического тока. Измеряется в Герцах. У нас и в Европе частота равна 50 Герцам, в США- 60 Гц.

Что означает частота 50 Герц? Она означает, что у нас переменный ток меняет свое направление на противоположное и обратно (отрезок Т- на графике) 50 раз за секунду!

Источниками переменного тока являются все розетки в доме и все то, что подключено напрямую проводами или кабелями к электрощиту. У многих возникает вопрос: а почему в розетке не постоянный ток? Ответ прост. В сетях переменного тока легко и с минимальными потерями преобразовывается величина напряжения до необходимого уровня при помощи трансформатора в любых объемах. Напряжение необходимо увеличивать для возможности передачи электроэнергии на большие расстояния с наименьшими потерями в промышленных масштабах.
С электростанции , где стоят мощные электрогенераторы, выходит напряжение величиной 330 000-220 000 , далее возле нашего дома на трансформаторной подстанции оно преобразуется с величины 10 000 Вольт в трехфазное напряжение 380 Вольт, которое и приходит в многоквартирный дом, а к нам в квартиру приходит однофазное напряжение, т. к. между напряжение равняется 220 В, а между разноименными фазами в электрощите 380 Вольт.

И еще одним из важных достоинств переменного напряжения является то, что асинхронные электродвигатели переменного тока конструктивно проще и работают значительно надежнее, чем двигатели постоянного тока.

Как переменный ток сделать постоянным

Для потребителей, работающих на постоянном токе- переменный преобразуется при помощи выпрямителей.

Преобразователь постоянного тока в переменный

Если с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор - это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.

Давайте для начала уточним, что мы подразумеваем под “постоянным напряжением”. Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток) – это такой ток, параметры,свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.

Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации :

Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).

Для того, чтобы преобразовать переменное однофазное напряжение одного значения в однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный трансформатор . А для того, чтобы преобразовать в постоянное пульсирующее напряжение , мы с вами после трансформатора подключали Диодный мост . На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.


Но как же нам из пульсирующего постоянного напряжения

получить самое что ни на есть настоящее постоянное напряжение?

Для этого нам нужен всего один радиокомпонент: конденсатор. А вот так он должен подключаться к диодному мосту:


В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.

Зависимость пульсаций от емкости конденсатора

Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:


Рассмотрим первый. Замеряем его номинал с помощью нашего LC – метр . Его емкость 25,5 наноФарад или 0,025микроФарад.


Цепляем его к диодному мосту по схеме выше


И цепляемся осциллографом:


Смотрим осциллограмму:


Как вы видите, пульсации все равно остались.

Ну что же, возьмем конденсатор емкостью побольше.

Получаем 0,226 микрофарад.


Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.


А вот собственно и осциллограмма


Не… почти, но все равно не то. Пульсации все равно видны.

Берем наш третий конденсатор. Его емкость 330 микрофарад. У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.


Цепляем его к диодному мосту снимаем с него осциллограмму.


А вот собственно и она


Ну вот. Совсем ведь другое дело!

Итак, сделаем небольшие выводы:

– чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.

– чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью , а также используют интегральные стабилизаторы напряжения , которые выдают чистейшее постоянное напряжение.

Как подобрать радиоэлементы для выпрямителя

Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд? Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт? А вот и не угадали! Со вторичной обмотки трансформатора мы будем получать .


где

U Д – действующее напряжение, В

U max – максимальное напряжение, В

Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула . Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!

Кстати, у меня получился 17 Вольтовый источник постоянного напряжения, так как у трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).

Ну и напоследок, чтобы лучше запомнилось: