Поверхностный эффект и его влияние на нагрев. Скин-эффект. Принцип работы Скин effect

Проникая в глубину проводника, амплитуда в электромагнитных волнах постепенно уменьшается. Это и есть скин-эффект, который носит другое название поверхностного эффекта. Например, если ток, имеющий высокую частоту, протекает по проводнику, то его распределение происходит не по всему сечению, а, в основном, в поверхностных слоях.

Принцип действия скин-эффекта

Это действие следует рассматривать на примере относительно длинного цилиндрического проводника, на который оказывает воздействие переменное напряжение, имеющее определенную частоту с изменением по времени.

Если взять постоянное напряжение, частота которого равна нулю, то в этом случае распределение электрического тока будет по всему сечению проводника. Это связано с тем, что напряженность постоянного тока будет одинаковой в каждой точке сечения проводника. Силовые линии магнитного поля, создаваемого током, образуются в виде концентрических окружностей, центр которых совпадает с осью проводника. Таким образом, постоянный ток распределяется по сечению вне зависимости от действия магнитного поля.

В случае с переменным током в проводнике, происходит его изменение во времени с одновременным изменением магнитного поля. При изменении потока магнитного поля наблюдается появление электродвижущей силы. Именно эта ЭДС вытесняет электрический к поверхности проводника с помощью магнитного поля. При очень высоких частотах весь ток будет протекать только по тонкому слою наружной части проводника.

Свойства скин-эффекта

Скин-эффект связан не только с высокочастотными токами, которые изменяются во времени. Это связано с любым временным изменением токов. Возникновение скин-эффекта может наблюдаться при непосредственном подключении проводника к постоянному напряжению. Именно в этот момент появляется ЭДС индукции большого значения, компенсирующая действие внешнего электрического поля на оси. Окончание этого процесса отмечается во время равномерного распределения тока в проводнике по всему сечению.

При очень быстром изменении тока, водится специальное время, в течение которого ток и магнитное поле проникают в глубину проводника. Эта величина носит наименование скин-нового времени. При этом, следует учитывать и тот фактор, что с уменьшением удельного сопротивления проводника, увеличивается время проникновения в него тока и магнитного поля.

В случае использования сверхпроводников, скин-время, теоретически, будет иметь бесконечно большое значение, магнитного поля не наблюдается, а протекание тока происходит исключительно по поверхности.

Скин-эффект (от англ. skin - кожа, оболочка)

поверхностный эффект, затухание электромагнитных волн по мере их проникновения в глубь проводящей среды, в результате которого, например, переменный ток по сечению проводника или переменный магнитный поток по сечению магнитопровода распределяются не равномерно, а преимущественно в поверхностном слое. С.-э. обусловлен тем, что при распространении электромагнитной волны в проводящей среде возникают Вихревые токи , в результате чего часть электромагнитной энергии преобразуется в теплоту. Это и приводит к уменьшению напряжённостей электрического и магнитного полей и плотности тока, т. е. к затуханию волны.

Чем выше частота ν электромагнитного поля и больше магнитная проницаемость μ проводника, тем сильнее (в соответствии с Максвелла уравнения ми) вихревое электрическое поле, создаваемое переменным магнитным полем, а чем больше проводимость а проводника, тем больше плотность тока и рассеиваемая в единице объёма мощность (в соответствии с законами Ома и Джоуля - Ленца). Т. о., чем больше ν, μ и σ, тем сильнее затухание, т. е. резче проявляется С.-э.

В случае плоской синусоидальной волны, распространяющейся вдоль оси х в хорошо проводящей, однородной, линейной среде (токами смещения по сравнению с токами проводимости можно пренебречь), амплитуды напряжённостей электрического и магнитного полей затухают по экспоненциальному закону:

Коэффициент затухания, μ 0 -Магнитная постоянная . На глубине х = δ = 1/α амплитуда волны уменьшается в е раз. Это расстояние называется глубиной проникновения или толщиной скин-слоя. Например, при частоте 50 гц в меди (σ = 580 ксим/см; μ = 1) σ = 9,4 мм, в стали (α = 100 ксим/см, = 1000) δ = 0,74 мм. При увеличении частоты до 0,5 Мгц δ уменьшится в 100 раз. В идеальный проводник (с бесконечно большой проводимостью) электромагнитная волна вовсе не проникает, она полностью от него отражается. Чем меньше расстояние, которое проходит волна, по сравнению с δ, тем слабее проявляется С.-э.

Для проводников при сильно выраженном С.-э., когда радиус кривизны сечения провода значительно больше δ и поле в проводнике представляет собой плоскую волну, вводят понятие поверхностного сопротивления проводника Z s (поверхностного импеданса). Его определяют как отношение комплексной амплитуды (См. Комплексная амплитуда) падения напряжения на единицу длины проводника к комплексной амплитуде тока, протекающего через поперечное сечение скин-слоя единичной длины. Комплексное сопротивление на единицу длины проводника:

где R 0 - активное сопротивление проводника, определяющее мощность потерь в нём, X 0 - индуктивное сопротивление, учитывающее индуктивность проводника, обусловленную магнитным потоком внутри проводника, l c - периметр поперечного сечения скин-слоя, ω = 2πν; при этом R 0 = X 0 . При сильно выраженном С.-э. поверхностное сопротивление совпадает с волновым сопротивлением (См. Волновое сопротивление) проводника и, следовательно, равно отношению напряжённости электрического поля к напряжённости магнитного поля на поверхности проводника.

В тех случаях, когда длина свободного пробега l носителей тока становится больше толщины δ скин-слоя (например, в очень чистых металлах при низких температурах), при сравнительно высоких частотах С.-э. приобретает ряд особенностей, благодаря которым он получил название аномального. Поскольку поле на длине свободного пробега электрона неоднородно, ток в данной точке зависит от значения электрического поля не только в этой точке, но и в её окрестности, имеющей размеры порядка l Поэтому при решении уравнений Максвелла вместо закона Ома приходится использовать для вычисления тока кинетическое уравнение Больцмана. Электроны при аномальном С.-э. становятся неравноценными с точки зрения их вклада в электрический ток; при l >> δ основной вклад вносят те из них, которые движутся в скин-слое параллельно поверхности металла или под очень небольшими углами к ней и проводят, т. о., больше времени в области сильного поля (эффективные электроны). Затухание электромагнитной волны в поверхностном слое по-прежнему имеет место, но количественные характеристики у аномального С.-э. несколько иные. Поле в скин-слое затухает не экспоненциально (R 0 /X 0 =

В инфракрасной области частот электрон за период изменения поля может не успеть пройти расстояние l. При этом поле на пути электрона за период можно считать однородным. Это приводит опять к закону Ома, и С.-э. снова становится нормальным. Т. о., на низких и очень высоких частотах С.-э. всегда нормальный. В радиодиапазоне в зависимости от соотношений между / и δ могут иметь место нормальный и аномальный С.-э. Всё сказанное справедливо, пока частота со меньше плазменной: ω ne2/m ) 1/2 (n - концентрация свободных электронов, е - заряд, m - масса электрона) (относительно более высоких частот см. ст. Металлооптика).

С.-э. часто нежелателен. В проводах переменный ток при сильном С.-э. протекает главным образом по поверхностному слою; при этом сечение провода не используется полностью, сопротивление провода и потери мощности в нём при данном токе возрастают. В ферромагнитных пластинах или лентах магнитопроводов трансформаторов, электрических машин и других устройств переменный магнитный поток при сильном С.-э. проходит главным образом по их поверхностному слою; вследствие этого ухудшается использование сечения магнитопровода, возрастают намагничивающий ток и потери в стали. «Вредное» влияние С.-э. ослабляют уменьшением толщины пластин или ленты, а при достаточно высоких частотах - применением магнитопроводов из магнитодиэлектриков (См. Магнитодиэлектрики).

С др. стороны, С.-э. находит применение в практике. На С.-э. основано действие электромагнитных экранов. Так для защиты внешнего пространства от помех, создаваемых полем силового трансформатора, работающего на частоте 50 гц, применяют экран из сравнительно толстой ферромагнитной стали; для экранирования катушки индуктивности, работающей на высоких частотах, экраны делают из тонкого слоя Al. На С.-э. основана высокочастотная поверхностная закалка стальных изделий (см. Индукционная нагревательная установка).

Лит.: Нетушил А. В., Поливанов К. М., Основы электротехники, т. 3, М., 1956; Поливанов К. М., Теоретические основы электротехники, ч. 3 - Теория электромагнитного поля, М., 1975; Нейман Л. Р., Поверхностный эффект в ферромагнитных телах, Л. - М., 1949. См. также лит. при ст. Металлы .

И. Б. Негневицкий.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Скин-эффект" в других словарях:

    - (поверхностный эффект) эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В результате этого эффекта, например, переменный ток высокой частоты при протекании по проводнику распределяется… … Википедия

    - (от англ. skin кожа, оболочка) (поверхностный эффект), затухание эл. магн. волн по мере их проникновения в глубь проводящей среды, в результате к рого, напр., перем. ток по сечению проводника или перем. магн. поток по сечению магнитопровода… … Физическая энциклопедия

    - (англ. skin кожа, оболочка + аффект) поверхностный эффект 1) явление протекания тока высокой частоты не по всему сечению сплошного проводника, а преимущ. по его поверхностному слою (электрический скин эффект); примен., напр., при поверхностной… … Словарь иностранных слов русского языка

    - (от англ. skin кожа, оболочка) (поверхностный эффект), неоднородное распределение переменного тока и связанного с ним электромагнитного поля по сечению проводника. При достаточно высоких частотах ток течёт в основном в тонком поверхностном слое… … Энциклопедический словарь

    - (от англ. skin кожа оболочка), (поверхностный эффект), неоднородное распределение переменного тока и связанного с ним электромагнитного поля по сечению проводника. При достаточно высоких частотах ток течет в основном в тонком поверхностном слое… … Большой Энциклопедический словарь

    Скин эффект, скин эффекта … Орфографический словарь-справочник

    Сущ., кол во синонимов: 1 эффект (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

) — явление затухания электромагнитных волн по мере их проникновения в проводящую среду.

Описание

Переменное во времени электрическое поле и связанное с ним магнитное поле не проникают в глубь , а сосредоточены в основном в относительно тонком приповерхностном слое (так называемом скин-слое). Происхождение скин-эффекта объясняется тем, что под действием внешнего переменного поля в проводнике свободные электроны создают токи, поле которых компенсирует внешнее поле в объеме проводника (скин-эффект проявляется у металлов, в плазме, ионосфере, вырожденных полупроводниках и других средах с достаточно большой проводимостью).

Глубина скин-слоя существенно зависит от проводимости, частоты электромагнитного поля и от состояния образца. На малых частотах толщина скин-слоя достаточно велика, убывает с ростом частоты и для металлов на частотах оптического диапазона оказывается сравнимой с длиной волны (столь малым проникновением электромагнитного поля и почти полным его отражением объясняется металлический блеск хороших проводников). Например, толщина скин-слоя для медного проводника при частоте электромагнитного поля в 50 Гц (стандартная частота для «городского» тока) составляет примерно 1 см, при частоте 5 кГц - примерно 0,1 см, а при частоте 0,5 МГц - примерно 10 мкм.

Иногда имеют место ситуации, когда длина свободного пробега электронов превышает толщину скин-слоя, в этом случае говорят об аномальном скин-эффекте (он наблюдается в СВЧ-диапазоне в чистых металлах при низкой температуре) - при таком эффекте рассеяние электронов на поверхности образца мало сказывается на толщине скин-слоя (здесь существенную роль играют электроны с малыми углами скольжения, для которых отражение близко к зеркальному).

При достаточно высоких значениях напряженности переменного электромагнитного поля, когда параметры среды, например проводимость, начинают зависеть от поля, скин-эффект становится нелинейным, т. е. толщина скин-слоя также начинает зависеть от интенсивности электромагнитного поля (наиболее легко нелинейный скин-эффект реализуется в плазме). Пороговые значения амплитуд электромагнитного поля, при которых происходит переход скин-эффекта в нелинейный, зависят от параметров среды и частот.

Автор

  • Разумовский Алексей Сергеевич

Источник

  1. Скин-эффект // Физический энциклопедия / Гл. ред. А.М. Прохоров. Т. 4. - М.: Большая Российская энциклопедия, 1992. С. 541–543.

Рассмотрим распространение электромагнитной волны в проводящей среде. Для этого воспользуемся уравнениями Максвелла (45.9) и возьмем ротор от второго из них. Принимая и используя первое и четвертое уравнения, а также векторное тождество и закон Ома получим уравнение для магнитного поля:

Отсюда следует дисперсионное уравнение

Рассмотрим эволюцию начального состояния поля (с заданным Решая (87.2) относительно и, получим

При магнитное поле затухает с характерным временем . В среде с хорошей проводимостью имеется два характерных времени затухания

Обратим внимание, что для быстрого затухания а для медленного о.

Аналогичным образом можно получить уравнение для электрического поля в среде, которое имеет вид

где - плотность свободных зарядов. Если их нет, то электрическое-поле затухает так же, как и магнитное. При наличии зарядов электрическое поле можно представить как , где Тогда уравнение (87.5) распадается на два, причем выражение для совпадает с (87.1), поскольку Еывр Формула для от принимает вид

поскольку Уравнение (87.6) эквивалентно рассмотренному ранее уравнению релаксации зарядов в среде (23.1), в чем легко убедиться, взяв дивергенцию от его левой части. Поэтому, как и заряды, потенциальная составляющая поля всегда затухает с характерным временем (87.4).

Рассмотрим теперь другую задачу: на границу проводящей среды падает электромагнитная волна заданной частоты и. Каково затухание волны в пространстве? Оно определяется мнимой частью. к из (87.2):

где - характерная глубина проникновения переменного электромагнитного поля в проводящую среду, называемая толщиной скин-слоя (от англ. skin - кожа).

В среде с плохой проводимостью

где имеет обычный вид. В обратном предельном случае

а фазовая скорость

Для промышленной частоты 50 Гц ( км) толщина скин-слоя в меди см, а в железе мм, см/с. В радиодиапазоне мм; (для меди).

Найдем теперь соотношение между электрическим и магнитным полями затухающей волны Проще всего его получить из первого уравнения (45.9): или, так как

Поскольку для хороших проводников (медь) а то в радиодиапазоне так что речь идет о затухании магнитного поля. Такое большое значение связано с отражением волны от поверхности хорошего проводника (см. § 72), при котором электрические поля падающей и отраженной волны почти компенсируют друг друга. Соотношение (87.10) определяет, таким образом, так называемые граничные условия Леонтовича при отражении волны от проводника с конечной проводимостью для компонент поля, касательных к поверхности.

Задача 1. Вычислить сопротивление проводника с учетом скин-эффекта Из закона Ома находим полный ток в скин-слое:

Действительная часть этого выражения определяет омическое сопротивление проводника (на единицу длины и единицу поперечного размера): мнимая - его внутреннюю индуктивность:

Вычислим теперь потери энергии в проводнике. Для этого найдем модуль вектора Пойнтинга на поверхности проводника. Получим прежде всего выражение для векторного произведения комплексных векторов: где - угол между ними, направленный от вектора а к Представляя получим Таким образом,

Это выражение имеет очень простой физический смысл: поток энергии равен плотности энергии в проводнике вблизи его границы, умноженной на скорость движения волны внутри проводника

Этот же результат можно получить и непосредственным интегрированием джоулевых потерь внутри проводника:

Наиболее распространенное применение скин-эффекта - экранирование от переменного магнитного поля. Последнее может быть вредно как само по себе, так и благодаря связанному с ним вихревому электрическому полю, создающему различные электрические наводки. Экранирование осуществляется путем окружения защищаемой аппаратуры достаточно толстым проводящим экраном. Практическая трудность связана с тем, что обычно экран не может быть полностью замкнутым. Необходимы, например, различные отверстия для подвода питания аппаратуры, наблюдения за ней и т. д. Интересно отметить, что такие экраны ослабляют поле сильнее, чем по простому экспоненциальному закону (см. задачи 2, 3).

Задача 2. Найти коэффициент экранирования цилиндрического экрана радиуса толщина стенок которого много меньше скин-слоя. Магнитное поле параллельно оси цилиндра.

Ввиду условия поля внутри стенок, а значит, и плотность тока можно считать однородными. Тогда ток в экране (на единицу его длины) можно определить просто по закону Фарадея:

где - поле внутри экрана. Закон сохранения циркуляции магнитного поля дает где - внешнее поле. Для коэффициента экранирования получаем

Здесь, кроме малого множителя который возникает при разложении экспоненты появляется большой множитель . Такой же множитель появляется и при сильном скин-эффекте . Физическая причина дополнительного ослабления поля в экранируемом пространстве связана с тем, что «хвост» потока в сплошном металле распределяется на большую площадь . В результате для коэффициента экранирования получается следующая простая оценка:

Другим важным применением скин-эффекта является формирование магнитного поля нужной конфигурации, которая повторяет форму проводящей поверхности с точностью до толщины скин-слоя.

Скин-эффект приводит к своеобразному взаимодействию переменного тока с проводящей стенкой (рис. XII.5). Так как силовые линии не проникают в глубь проводника, то при достаточно малой толщине скин-слоя нормальная составляющая магнитного поля на поверхности близка к нулю. Поэтому конфигурация магнитного

Рис. XII.5. Поля импульсного пучка электронов вблизи проводящей поверхности.

поля тока вблизи проводящей плоской стенки эквивалентна полю двух токов разного направления. Один из них называется обычно изображением тока по аналогии с электростатическим изображением заряда. Таким образом, ток «отталкивается» от проводящей поверхности.

Если ток создается пучком заряженных частиц, то кроме взаимодействия тока со стенкой, есть еще взаимодействие заряда, которое приводит к притяжению пучка стенкой. Последнее всегда сильнее, так что в результате получается притяжение к стенке, равное на единицу длины пучка (сравни (30.4))

Если скомпенсировать электрический заряд пучка, то результирующая сила изменит направление; такой пучок будет отталкиваться от стенки (рис. XII.6). На этом явлении основан интересный метод фокусировки пучка в металлической трубе, остроумно названный ФУКОсировкой. Так как пучок отталкивается трубой «со всех сторон», он устойчиво движется вдоль оси трубы. Такая фокусировка позволяет транспортировать достаточно интенсивный пучок по изогнутой трубе и, в частности, удерживать его в кольцевой трубе.

Рис. XII.6. Отражение пучка электронов от металлической пластинки.

Название этой самофокусировки связано с тем, что токи, наводимые переменным полем в проводнике, известны как токи Фуко, по имени французского ученого, впервые описавшего это явление.

Задача 3. Оценить магнитное поле вблизи центра тонкого проводящего диска радиуса и толщины помещенного в однородное переменное магнитное поле, если

Токи Фуко плотностью возбуждаемые в диске, создают на его оси поле (см. (28.4))

В свою очередь, ток в кольце донцентрнческом с диском,

Сопротивление кольца, -полное поле в плоскости кольца. Подчеркнем, что здесь учтена индуктивность кольца, так как ЭДС индукции вычисляется через сумму внешнего поля и поля токов Фуко (ср. (48.4) и задачу 2).

Аналитически система уравнений не решается. Для оценки можно принять где - поле в центре диска. Тогда

(сравни задачу 2 и комментарий к ней).

Рассмотрим теперь нестационарный скин-эффект, когда зависимость магнитного поля от времени на границе проводника не является гармонической. Если по-прежнему пренебречь токами смещения по сравнению с токами проводимости, то из (87.1) приходим к уравнению диффузионного типа:

Такой же вид имеет и уравнение теплопроводности (см. (87.37) ниже). Коэффициент диффузии магнитного поля

Простейший случай настационарного скин-эффекта соответствует экспоненциальному росту внешнего поля . Такая зависимость получается из гармонической формальной заменой: Тогда для одномерной задачи решение диффузионного уравнения (87.14) сразу получается из (87.9) такой же

Эффективная толщина скин-слоя

не зависит от времени, как и в стационарном случае. Решение (87.16) можно интерпретировать как диффузионное распространение фронта магнитного поля вглубь проводника

со скоростью

Последнее неравенство есть условие применимости диффузионного приближения (87.14), т. е. пренебрежение токами смещения. Например, для меди с диффузионная скорость

Рассмотрим теперь более сложную задачу о нестационарном скин-эффекте при быстром («мгновенном») включении гармонического поля:

Частоту поля а также толщину стационарного скин-слоя полагаем равными единице. Фурье-спектр поля (87.20)

содержит низкие частоты которые и будут определять значительно более сильное проникновение поля в проводник по сравнению со стационарным скин-эффектом на частоте . Пренебрегая последним (ср. спектры (87.21) и (78.8)) и считая характерную область частот (см. ниже), можем написать решение в виде фурье-интеграла:

Мы использовали здесь выражение для стационарного скин-эффекта на частоте фурье-гармоники со в виде

Легко проверить, что это выражение справедливо как для так и для

Вычисление интеграла (87.22) производится с помощью замены переменой: и приведения показателя экспоненты к полному квадрату (ср. (85.6)). В результате получаем

где новая переменная . Поскольку внешнее поле (87.20) можно представить в виде выражение

описывает нестационарный скин-эффект при включении внешнего поля и в точности совпадает с результатом работы , полученным другим методом.

При фиксированной глубине функция достигает максимального значения

в момент времени Таким образом, максимальное поле убывает с глубиной значительно медленнее, чем при стационарном скин-эффекте. Отметим, что в заданный момент времени поле внутри проводника имеет максимум при равный

В принятом приближении все полученные выражения справедливы только для (см. 87.23). Поэтому решение (87.24) не удовлетворяет граничному условию где нужно учитывать также отброшенный стационарный вклад в скин-эффект, который сответствует частотам в полном спектре (78.8) внешнего поля (87.20).

Свойства быстропеременных токов

Определение 1

Токами высокой частоты считают токи, которые имею частоту выше, чем $10000 Гц$. Для этих токов не выполняются условия квазистационарности. В процессе протекания такого тока по проводнику, в проводнике появляются вихревые токи, которые порождаются изменениями магнитного поля с высокой скоростью.

Изменения магнитного поля в проводнике происходят такие, что на его оси вихревой ток имеем направление встречное к основному току, а у поверхности проводника течение этого тока совпадает с направлением основного тока. Значит, ток высокой частоты имеет непостоянную плотность по поперечному сечению. Плотность тока в центре сечения проводника почти равна нулю. Она увеличивается при движении в направлении к наружной поверхности. При очень высокой частоте ток течет по тонкому наружному слою проводника.

Сейчас токи высокой частоты широко применяются. Высокочастотные плавильные печи применяют для быстрого прогрева металлических тел. С помощью высокочастотных токов проводят закаливание стальных деталей. Объект на короткое время размещают внутри катушки с током высокой частоты. Поверхностный слой детали разогревается вихревыми токами, ее внутренность при этом остается холодной. Деталь вынимают из катушки, внутренняя часть быстро отнимает тепло у поверхностного слоя, поверхность быстро охлаждается и закаляется. Глубину прогрева регулируют временем выдержки детали в катушке и частотой тока. После такой процедуры поверхность детали становится твердой и прочной, внутри металл сохраняет упругость и пластичность.

Скин --эффект

Определение 2

Постоянный ток по поперечному сечению проводника распределяется равномерно. У переменного тока из-за индукционного взаимодействия разных элементов тока проходит перераспределение плотности тока по поперечному сечению проводника. Явление, при котором ток преимущественно сосредотачивается в поверхностном слое проводника, называется скин-эффектом .

Пусть мы имеем цилиндрический проводник, по которому течет ток. Вокруг проводника с током образуется магнитное поле. Силовые линии этого поля -- концентрические окружности, центр которых лежит на оси проводника. Если силу тока увеличить, то повысится индукция магнитного поля, но форма силовых линий не изменится. Соответственно, производная $\frac{\partial \overrightarrow{B}}{\partial t}$ направлена по касательной к линии индукции магнитного поля, линии производной также -- окружности, которые совпадают с силовыми линиями. Мы знаем из закона электромагнитной индукции, что:

Вектор напряженности индукционного поля в областях расположенных ближе к оси проводника имеет направление противоположное вектору напряженности электрического поля, которое создает ток, в дальних областях направления этих векторов совпадают. В результате плотность тока уменьшается около оси и увеличивается ближе к поверхности проводника, то есть появляется скин-эффект.

В металлах в виду их высокой проводимости током смещения можно пренебречь в сравнении с током проводимости. Из-за чего проникновение магнитного поля в металл аналогично процессу диффузии в математическом отношении. За основу возьмем уравнение (1) и уравнение (2):

Используем закон Ома:

приравняем правые части выражений (2) и (3) и продифференцируем полученное выражение, в результате имеем:

Или учитывая формулу (1):

Используем известные соотношения:

окончательно получим:

Если ток течет по однородному бесконечному проводнику, который занимает полупространство y$>$0 вдоль оси X, причем поверхность проводника плоская, и можно записать:

В таком случае уравнение (7) преобразуется к виду:

Можно предположить, что:

Подставив выражение (11) в уравнение (10) получим:

Решением уравнения (12) является функция:

где $\alpha =\sqrt{\frac{\omega \sigma {\mu }_0\mu }{2}}$. Возьмем действительную часть выражения (13) и перейдем к плотности тока, используя закон Ома, получим:

Толщина скин-слоя

Объёмная плотность тока максимальна у поверхности проводника. На расстоянии $\triangle =\frac{1}{\alpha }\ \ от\ поверхности\ $она становится в e раз меньше. Почти весь ток находится в $\triangle $ слое, который называют толщиной скин -- слоя. Толщина скин - слоя равна:

При высокой частоте тока толщина скин - слоя весьма мала.

Пример 1

Задание: Во сколько раз уменьшится толщина скин -- слоя меди, если ${\omega }_1={10}^4с^{-1}$, а ${\omega }_2={10}^6с^{-1}$.

Решение:

Толщина скин -- слоя проводника рассчитывается по формуле:

\[\triangle =\sqrt{\frac{2}{\sigma \mu {\mu }_0\omega }}\left(1.1\right).\]

Если дважды записать выражение (1.1) для разных частот тока, то получим:

\[\frac{{\triangle }_1}{{\triangle }_2}=\sqrt{\frac{{\omega }_2}{{\omega }_1}}\left(1.2\right).\]

Проведем вычисления:

\[\frac{{\triangle }_1}{{\triangle }_2}=\sqrt{\frac{{10}^6}{{10}^4}}=10.\]

Ответ: Толщина уменьшится в 10 раз.

Пример 2

Задание: Почему при высокой частоте тока можно убрать проводящий материал из цилиндрической области внутри проводника и оставить только проводящую оболочку?

Решение:

Как было показано в предыдущем примере, с увеличением частоты тока, глубина слоя в котором распространяется ток, становится очень небольшой. То есть ток течет лишь в малой части поперечного сечения проводника около его поверхности (скин - эффект). Следовательно, ничего не изменится, если убрать проводящий материал из цилиндрической области внутри проводника и оставить только цилиндрическую оболочку толщиной скин -- слоя. Если проводник толстый, а частота его невелика, то ток течет по всему поперечному сечению и только немного ослабевает к оси провода. Так, при технической частоте в $50 Гц$ скин -- эффект в обычных проводниках выражается очень слабо.