Схемы усилителей мощности на кв диапазоны конструкции. Усилители и трансиверы сделанные левой рукой. Если ламповый КВ усилитель мощности будет эксплуатироваться с трансивером

Большинство аудиолюбителей достаточно категорично и не готово к компромиссам при выборе аппаратуры, справедливо полагая, что воспринимаемый звук обязан быть чистым, сильным и впечатляющим. Как этого добиться?

Поиск данных по Вашему запросу:

Усилители и трансиверы сделанные левой рукой

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Пожалуй, основную роль в решении этого вопроса сыграет выбор усилителя.
Функция
Усилитель отвечает за качество и мощь воспроизведения звука. При этом при покупке стоит обратить внимание на следующие обозначения, знаменующие внедрение высоких технологий в производство аудио - аппаратуры:


  • Hi-fi. Обеспечивает максимальную чистоту и точность звука, освобождая его от посторонних шумов и искажений.
  • Hi-end. Выбор перфекциониста, готового немало заплатить за удовольствие различать мельчайшие нюансы любимых музыкальных композиций. Нередко к этой категории относят аппаратуру ручной сборки.

Технические характеристики, на которые следует обратить внимание:

  • Входная и выходная мощность. Решающее значение имеет номинальный показатель выходной мощности, т.к. краевые значения часто недостоверны.
  • Частотный диапазон. Варьируется от 20 до 20000 Гц.
  • Коэффициент нелинейных искажений. Здесь все просто - чем меньше, тем лучше. Идеальное значение, согласно мнению экспертов - 0,1%.
  • Соотношение сигнала и шума. Современная техника предполагает значение этого показателя свыше 100 дБ, что сводит к минимуму посторонние шумы при прослушивании.
  • Демпинг-фактор. Отражает выходное сопротивление усилителя в его соотношении с номинальным сопротивлением нагрузки. Иными словами, достаточный показатель демпинг-фактора (более 100) уменьшает возникновение ненужных вибраций аппаратуры и т.п.

Следует помнить: изготовление качественных усилителей - трудоемкий и высокотехнологичный процесс, соответственно, слишком низкая цена при достойных характеристиках должна Вас насторожить.

Классификация

Чтобы разобраться во всем многообразии предложений рынка, необходимо различать продукт по различным критериям. Усилители можно классифицировать:

  • По мощности. Предварительный - своеобразное промежуточное звено между источником звука и конечным усилителем мощности. Усилитель мощности, в свою очередь, отвечает за силу и громкость сигнала на выходе. Вместе они образуют полный усилитель.

Важно: первичное преобразование и обработка сигнала происходит именно в предварительных усилителях.

  • По элементной базе различают ламповые, транзисторные и интегральные УМ. Последние возникли с целью объединить достоинства и минимизировать недостатки первых двух, например, качество звука ламповых усилителей и компактность транзисторных.
  • По режиму работы усилители подразделяются на классы. Основные классы - А, В, АВ. Если усилители класса А используют много энергии, но выдают высококачественный звук, класса B с точностью до наоборот, класс AB представляется оптимальным выбором, представляя собой компромиссное соотношение качества сигнала и достаточно высокого КПД. Также различают классы C, D, H и G, возникшие с применением цифровых технологий. Также различают однотактные и двухтактные режимы работы выходного каскада.
  • По количеству каналов усилители могут быть одно-, двух- и многоканальными. Последние активно применяются в домашних кинотеатрах для формирования объемности и реалистичности звука. Чаще всего встречаются двухканальные соответственно для правой и левой аудиосистем.

Внимание: изучение технических составляющих покупки, конечно, необходимо, но зачастую решающим фактором является элементарное прослушивание аппаратуры по принципу звучит-не звучит.

Применение

Выбор усилителя в большей степени обоснован целями, для которых он приобретается. Перечислим основные сферы использования усилителей звуковой частоты:

  1. В составе домашнего аудиокомплекса. Очевидно, что лучшим выбором является ламповый двухканальный однотакт в классе А, также оптимальный выбор может составить трехканальный класса АВ, где один канал определен для сабвуфера, с функцией Hi - fi.
  2. Для акустической системы в автомобиле. Наиболее популярны четырехканальные усилители АВ или D класса, в соответствии с финансовыми возможностями покупателя. В автомобилях также востребована функция кроссовер для плавной регулировки частот, позволяющей по мере необходимости срезать частоты в высоком или низком диапазоне.
  3. В концертной аппаратуре. К качеству и возможностям профессиональной аппаратуры обоснованно предъявляются более высокие требования в силу большого пространства распространения звуковых сигналов, а также высокой потребности в интенсивности и длительности использования. Таким образом, рекомендуется приобретение усилителя классом не ниже D, способного работать почти на пределе своей мощности (70-80% от заявленной), желательно в корпусе из высокотехнологичных материалов, защищающем от негативных погодных условий и механических воздействий.
  4. В студийной аппаратуре. Все вышеизложенное справедливо и для студийной аппаратуры. Можно добавить о наибольшем диапазоне воспроизведения частот - от 10 Гц до 100 кГц в сравнении с таковым от 20 Гц до 20 кГц в бытовом усилителе. Примечательна также возможность раздельной регулировки громкости на различных каналах.

Таким образом, чтобы долгое время наслаждаться чистым и качественным звуком, целесообразно заранее изучить все многообразие предложений и подобрать вариант аудио аппаратуры, максимально отвечающий Вашим запросам.

(статью дополнено 07.02.2016г.)

UT5UUV Андрей Мошенский.

Усилитель «Джин»

Транзисторный усилитель мощности

с бестрансформаторным питанием

от сети 220 (230)В.

Идея создания мощного, лёгкого и дешёвого усилителя большой мощности актуальна со времён зарождения радиосвязи. Множество прекрасных конструкций на лампах и транзисторах разработано за последний век.

Но до сих пор идут споры, по поводу превосходства твёрдотельной, либо электронно-вакуумной усилительной техники большой мощности…

В эпоху импульсных источников питания вопрос массогабаритных параметров источников вторичного электропитания не столь остр, но, фактически исключив таковой, применив выпрямитель напряжения промышленной сети, всё равно получается выигрыш.

Заманчивой кажется идея использования современных высоковольтных импульсных транзисторов в усилителе мощности радиостанции, применив для питания сотни вольт постоянного тока.

Вашему вниманию предлагается конструкция усилителя мощности на «нижние» КВ диапазоны мощностью не менее 200 Ватт с бестрансформаторным питанием, построенная по двухтактной схеме на высоковольтных полевых транзисторах. Основное преимущество перед аналогами – массогабаритные показатели, низкая стоимость комплектующих, стабильность в работе.

Основная идея – применения активных элементов – транзисторов с граничным напряжением сток-исток 800В (600В) предназначенных для работы в импульсных источниках вторичного электропитания. В качестве усилительных элементов выбраны полевые транзисторы IRFPE30, IRFPE40, IRFPE50 производства компании “International Rectifier”. Цена изделий 2 (два) дол. США. Чуть проигрывают им по граничной частоте, обеспечивая работу лишь в диапазоне 160м, 2SK1692 производства “Toshiba”. Любители усилителей на базе биполярных транзисторов, могут поэкспериментировать с 600-800 вольтовыми BU2508, MJE13009 и иными подобными.

Методика расчёта усилителей мощности и ШПТЛ приведена в справочнике радиолюбителя коротковолновика С.Г. Бунина Л.П. Яйленко. 1984г.

Моточные данные трансформаторов приведены ниже. Входной ШПТЛ TR1 выполнен на кольцевом сердечнике К16-К20 из феррита М1000—2000НМ(НН). Число витков 5 витков в 3 провода. Выходной ШПТЛ TR2 выполнен на кольцевом сердечнике К32-К40 из феррита М1000—2000НМ(НН). Число витков 6 витков в 5 проводов. Провод для намотки рекомендован МГТФ-035.

Возможно изготовить выходной ШПТЛ в виде бинокля, что хорошо скажется на работе в «верхней» части КВ диапазона, правда там приведенные транзисторы не функционируют из-за времени нарастания и спада тока. Такой трансформатор может быть изготовлен из 2 столбцов по 10 (!) колец К16 из материала М1000—2000. Все обмотки по схеме – один виток.

Данные замера параметров трансформаторов приведены в таблицах. Входные ШПТЛ нагружены на входные резисторы (у автора, 5,6 Ома вместо расчётных), включенные параллельно с ёмкостью затвор-исток, плюс ёмкостью за счёт эффекта Миллера. Транзисторы IRFPE50. Выходные ШПТЛ были нагружены со стороны стоков на безындукционный резистор 820 Ом. Векторный анализатор АА-200 производства RigExpert. Завышенный КСВ может быть объяснён недостаточно плотной укладкой витков трансформаторов на магнитопровод, ощутимым несоответствием волнового сопротивления линии из МГТФ-0,35 требуемому в каждом конкретном случае. Тем не менее, на диапазонах 160, 80 и 40 метров проблем не возникает.

Рис 1. Схема электрическая принципиальная усилителя.

Источник питания мостовой выпрямитель 1000В 6А, нагруженный на конденсатор 470,0 на 400В.

Не забывайте о нормах техники безопасности, качестве радиаторов и слюдяных прокладок.

Рис 2. Схема электрическая принципиальная источника постоянного тока.

Рис 3. Фотография усилителя со снятой крышкой.

Таблица 1. Параметры ШПТЛ TR1, выполненного на кольце К16.

Частота кГц R jX SWR
1850 45,5 +4,2 1,15
3750 40,5 +7,2 1,3
7150 40,2 +31,8 2,1

Таблица 2. Параметры ШПТЛ TR2, выполненного на кольце К40.

Частота кГц R jX SWR
1800 48 -0,5 1,04
3750 44 -4,5 1,18
7150 40,3 -5,6 1,28
14150 31,1 4,0 1,5
21200 х х 1,8
28300 х х 2,2

Рис 4. Выходной ШПТЛ на кольце К40.

Таблица 3. Параметры ШПТЛ TR2, конструкции «бинокль».

Частота кГц R jX SWR
1850 27,3 +26 2,5
3750 46 +17 1,47
7150 49 -4,4 1,10
14150 43 -0,9 1,21
21200 х х 1,41
28300 х х 1,7

Рис 5. Выходной ШПТЛ конструкции «бинокль».

При параллельном включении транзисторов и пересчёте ШПТЛ мощность можно значительно повысить. К примеру, на 4 шт. IRFPE50 (2 в плече), выходном ШПТЛ 1:1:1 и питании 310В на стоках, легко получаема выходная мощность 1кВт. При такой конфигурации КПД ШПТЛ особо высок, методика выполнения ШПТЛ неоднократно описана.

Авторский вариант усилителя на двух IRFPE50, приведенный на фотографиях выше по тексту, прекрасно работает на диапазонах 160 и 80 м. Мощность 200 Ватт на нагрузке 50 Ом при входной мощности около 1 Ватта. Цепи коммутации и «обвода» не приведены и зависят от Ваших пожеланий. Прошу обратить внимание на отсутствие в описании выходных фильтров, эксплуатация усилителя без которых недопустима.

Андрей Мошенский

Дополнение (07.02.2016):
Уважаемые читатели! По многочисленным просьбам, с разрешения Автора и редакции, выкладываю Также, привожу фотографию новой конструкции усилителя «Джин».

Данный усилитель является развитием идеи предложенной Игорем Гончаренко (DL2KQ) в статье «Легкий и мощный PA», которую можно прочитать в интернете по ссылке http://dl2kq.de/pa/1-1.htm . Поэтому я никого не агитирую, а просто хочу сказать, что анодный трансформатор - деталь тяжелая и необязательная в усилителе.

Написанная статья является описанием изготовленного усилителя, а не научным трудом, претендующим на открытие. Каждый выбирает то , что ему по душе.

Не забывайте, в усилителе присутствует высокое (1200 В) напряжение, опасное для жизни, правила электробезопастности никто не отменял! Не включайте усилитель в сеть со снятой крышкой!

Решение застабилизировать накал лампы принято только из-за особенностей местной электросети, напряжение которой гуляет от 180 до 240 В, а значит напряжение накала будет гулять от 10 до 13 В, мне просто хотелось забыть про эту проблему. Хотя если у радиолюбителя таких проблем нет, то стабилизатор накала можно не делать, а 12 В с обмотки накального трансформатора подать на С13 Рис.1.

Вход УМ - широкополосный, но для улучшения работы усилителя резистор Rк лучше заменить на переключаемые диапазонные фильтры. Резистор R1 - безындукционный, например ТВО.

Входной трансформатор Твх - типа «бинокль» собран из шести ферритовых колец М2000НМ-1 К20х12х6, намотан одновременно тремя проводами (один из них в фторопластовой изоляции - входная обмотка) и каждая обмотка содержит по 2 витка.

Антенное реле ТКЕ-54, три группы контактов К1.1 - К1.3 включены параллельно и используются для коммутации антенной цепи, а контакт К1.4 для включения входного реле Р2 - РЭН-34, контакты К2.1 - К2.2 включены так же параллельно.

Анодный L2 и защитный Др защ дроссели намотаны на ферритовых стержнях марки М400НН диаметром 10 и длиной 100 мм каждый, проводом ПЭВ-2 диаметром 0,27 мм, длина намотки - 70 мм.

Разделительные конденсаторы С7 и С10 - емкостью 1000 - 2000 пФ типа К15-У, с трехкратным запасом по напряжению и способные выдержать соответствующую реактивную мощность, тут экономить не следует. Попытка применить в ВЧ цепи «что попало под руку» ничем хорошим не заканчивается. С5 и С6 типа К15-У, КВИ-3.

В П-контуре использован вариометр, (обмотки включены параллельно) что позволило согласовать УМ с антенной Inv-V, питаемой длинной линией во всем диапазоне частот от 3 до 14 МГц. А конденсатор С8 (зазор между пластинами для Uа=1200 В около 0,5 - 0,8 мм) был заменен на галетный переключатель и четыре конденсатора типа К15-У на 33, 68, 150 и 220 пФ. Но детали П-контура могут быть и иными, в зависимости от возможностей радиолюбителя.

Конденсаторы С12 и С14 - типа КСО на 250 В.

Рис. 2.

Узел Auto TX на транзисторе VT1 Рис. 1 переводит УМ в режим передачи при появлении ВЧ сигнала на входе, это удобно для цифровых видов связи. Переключатель Auto TX выведен на переднюю панель.

На зло классической традиции я не стал запирать лампу на прием. Во первых нужно было бы применить реле с хорошей изоляцией между контактами и обмоткой (не менее 2 кВ), во вторых при отсутствии анодного тока немножко перегревается катод. Был изготовлен стабилизатор смещения (Рис.3) - транзисторный аналог стабилитрона с регулировкой напряжения стабилизации от 9 до 18 В, что позволило корректировать ток покоя (который составляет 40 - 50 мА) в процессе эксплуатации.

Рис. 3.

При изменении тока через стабилизатор от 40 до 300 мА напряжение стабилизации изменяется на 0,2 В. Транзистор VT1ст Рис. 3 установлен на радиатор.

Узел питания показан на Рис. 4.

Накальный трансформатор Т1 с хорошей изоляцией между обмотками (ТПП, ТН). Стабилизатор питания накала собран на транзисторах VT1, VT2 и интегральном стабилизаторе V1. Стабилизатор имеет ограничение по току нагрузки на уровне 2,3 А (определяется сопротивлением резистора R7 Рис.4), что уменьшает токовые перегрузки подогревателя при включении.

На транзисторе VT3 собран таймер, который примерно через 15 сек после включения УМ замыкает резистор R2, ограничивающий ток заряда электролитических конденсаторов анодного выпрямителя. Напряжение +27 В используется для питания реле и иллюминации. Транзисторы VT2, VT3 и диодная сборка VD5 Рис. 4 установлены на радиаторах.

Анодный выпрямитель на диодах D1 - D4 собран по схеме учетверения сетевого напряжения, хотя напряжение анода 1200 В (да еще -100 В просадка при нагрузке) для ГИ-7Б несколько маловато. Поэтому целесообразнее собрать выпрямитель по схеме Рис. 5 для получения 1800 В (схема использована из статьи Игоря Гончаренко, DL2KQ). Каждый из диодов D1 - D4 зашунтирован конденсатором 1000 пФ 1000 В. Дроссель ДР от сетевого фильтра импульсного блока питания видеомонитора.

Рис. 5

В результате на эквиваленте нагрузки 50 Ом 200 Вт при входной мощности 15 Вт получено на частоте 3,600 МГц - 180 Вт (ток анода 250 мА), а на частоте 14,200 МГц - 190 Вт (Iа 260 мА).

Внешний вид учетверителя:

Анодный блок:

Ламповый блок:

Монтаж общий:

Внешний вид:

Изготовленный усилитель (размеры корпуса 350х310х160 мм) получился безопаснее любого импульсного компьютерного блока питания, ток утечки на землю составляет 0,05 мА. С момента ввода в эксплуатацию УМ, он пережил несколько SSB, RTTY и PSK тестов, а также при повседневной работе, показал себя надежным изделием.

UR5YW, Мельничук Василий, г. Черновцы, Украина.

E-mail: [email protected]

Усилитель мощности на IRF630 для КВ радиостанции за основу усилителя были взяты IRF630 как наиболее дешёвые и распространенные транзисторы. Цена их колеблется от 0,45 до 0,7 $.
Их основные характеристики: UCи макс = 200 В; 1с макс. = 9 А; U3и макс = ±20 В; S = 3000 мА/В; Сзи = 600…850 пФ (в зависимости от фирмы изготовителя); Сси – не более 250 пФ (реально измеренная Сси на 10 транзисторах разных фирм производителей – около 210 пФ); рассеиваемая мощность Рс – 75 Вт.

Транзисторы IRF630 предназначены для работы в импульсных схемах (развёртки мониторов компьютеров, импульсные блоки питания), но при выведении их в режим, близкий к линейному, дают хорошие показатели и в связной аппаратуре. По результатам моих «лабораторных работ» частотная характеристика этих транзисторов, если пытаться скомпенсировать в максимальной степени входную ёмкость, не хуже, чем у КП904. Во всяком случае, устанавливая их вместо КП904, я получал гораздо лучшие результаты как по АЧХ, линейности и усилению, так и по надёжности работы.

Усилитель мощности на IRF630 для КВ радиостанции испытывался при напряжении питания 36-50 В, но наиболее надёжно и эффективно он работал при напряжении питания 40 В, от стабилизированного источника. Расчёт усилителя производился под выходную мощность 80 Вт, чтобы сохранить надёжность работы, хотя с него можно было «выкачивать» и более 100 Вт. Правда надёжность работы транзисторов падала.

Учитывая входную ёмкость IRF630 и тот факт, что эти транзисторы управляются не током, а напряжением, в отличие от биполярных. В данном усилителе не удалось устранить некоторый завал частотной характеристики выше 18 МГц (Рвых 30МГц; 0,7РВых макс) хотя схемотехнические меры принимались. Но это присуще многим схемам, в том числе и на биполярных транзисторах.

Линейные характеристики усилителя хорошие, КПД; 55%, что подтверждает данные, которые приводились в упомянутой выше статье. Самое главное – это дешевизна комплектующих деталей, в том числе и транзисторов. Которые можно свободно приобрести на радиорынках и в фирмах, занимающихся ремонтом компьютерных мониторов и блоков питания. Для получения расчетной мощности на вход усилителя необходимо подать сигнал не более 5 В (эфф.) на нагрузке 50 Ом.

При необходимости коэффициент усиления можно снизить. Уменьшив сопротивление R1, R12, R13 (рис.), при этом остальные характеристики практически не изменятся. Но не стоит забывать, что напряжение пробоя затвора транзисторов не превышает 20 В, т.е. Uвх.эфф.макс. нужно умножить на 1,41.

На VT1 собран предварительный усилитель, который охвачен двумя цепями ООС – R1, С6 (линеаризует работу транзистора и предотвращает самовозбуждение за счет уменьшения коэффициента усиления) и R5, С7* (частотнозависимая ООС, корректирующая АЧХ на «верхних» диапазонах). На VT2, VT3 собран двухтактный оконечный каскад с раздельными цепями установки смещения и аналогичными первому каскаду цепями ООС.

П-фильтры L2, С32, СЗЗ, С37, С38 и L3, С35, С36, С40, С41 служат для приведения выходного сопротивления VT2, VT3, которое составляет около 15 Ом, к 25 Ом. Одновременно это ФНЧ с частотой среза около 34 МГц. После трансформатора сложения мощностей ТЗ выходное сопротивление усилителя становится равным 50 Ом. VD1-VD6 – детектор системы ALC и индикатора перенапряжений в стоковой цепи выходных транзисторов, собранного на VD7, VD8, R21, С39 (при достижении пикового напряжения на стоках VT2, VT3 более 50 В, «загорается» светодиод VD7, что свидетельствует о повышенном КСВ).

При задействовании управляющего напряжения для цепей ALC, которое будет изменять уровень мощности. В зависимости от уровня напряжения на выходе, светодиод не будет «загораться». В любом случае нужно помнить, что выходные каскады на транзисторах нужно подсоединять к антенне через согласующее устройство. Ведь антенна – это не активная нагрузка, и на каждом из диапазонов ведёт себя по разному, даже если и написано, что работает на всех диапазонах.

Монтаж усилитель мощности на IRF630 для КВ радиостанции выполнен на плате из двухстороннего стеклотекстолита, на которой скальпелем вырезаны прямоугольные контактные площадки для узлов схемы и «общего провода». По контуру платы оставлена полоска металлизации «общего провода».

Контактные площадки «общего провода» соединяются сквозными перемычками со сплошной металлизацией второй стороны платы через 2…3 см. Детали располагают в том порядке, как указано на схеме (рис.). Таким способом было изготовлено около десятка усилителей. В процессе наладки они показали хорошую повторяемость, качественную и надёжную работу.

Плата коммутации усилитель мощности на IRF630 для КВ радиостанции:

выполняется любым способом и соединяется проводами с усилителем, реле располагаются у входа и выхода усилителя, а управление ими подводится к коммутационной плате. Подстроенные резисторы R1, R2, R3 (рис.2) нужно применять многооборотные, предварительно установив их движки в нижнее по схеме положение. Для того, чтобы при установке тока покоя резким движением не вывести из строя транзисторы.

В истоковые цепи всех транзисторов (рис.1) введены резисторы, которые уменьшают их крутизну по «постоянке», и тем самым дополнительно их защищают. Эти меры были приняты после того, как, набравшись опыта работы с такими транзисторами и выбросив десятка полтора в мусор, я понял, что такая крутизна по постоянному току не нужна. Установка начального тока каждого выходного транзистора в отдельности сделана для того, чтобы не было надобности перебирать кучу транзисторов.

Предварительно устанавливают токи покоя VT1 около 150 мА и VT2, VT3 – по 60-80 мА, но одинаковые в каждом плече, а более точно – с помощью анализатора спектра. Но, как правило, достаточно просто установить правильно токи покоя.

Теперь поговорим о том, как нужно устанавливать транзисторы. Корпус этих транзисторов (ТО-220) напоминает «пластмассовый» КТ819 с выводом стока на металлическую подложку и металлический фланец. Этого не нужно бояться и крепить их на радиатор можно рядом с платой усилителя мощности по разные стороны через слюдяные прокладки. Но слюда должна быть качественной и предварительно обработана теплопроводящей очищенной от песка пастой. Автор заостряет внимание на этом в связи с тем, что к слюде подводится не только постоянное напряжение, а и напряжение ВЧ.

Конструктивная ёмкость крепежа через слюду входит в ёмкость П-фильтров, так же впрочем, как и выходная емкость транзисторов. Транзисторы лучше прижимать к радиатору не через отверстие во фланце, а дюралевой пластиной, прижимающей два выходных транзистора сразу, что обеспечивает лучшую теплоотдачу и не нарушает слюду. Такой же крепёж и у VT1, только в начале платы.

Трансформаторы мотаются на кольцах из феррита марки НН и, в зависимости от наличия, проницаемостью от 200 до 1000. Размеры колец должны соответствовать мощности, я применил 600НН К22х10,5х6,5. Намотка производилась проводом ПЭЛШО-0,41 для Т1 (5 витков в три провода, 4 скрутки на сантиметр) и ПЭЛ-ШО-0,8 для Т2 (4 витка в два провода, 1 скрутка на сантиметр), ТЗ (6 витков в два провода, 1 скрутка на сантиметр). В связи с тем, что не всегда можно найти провод нужного диаметра в шелковой изоляции. Намотку также можно выполнить проводом ПЭВ-2, обязательно «прозвонив» обмотки между собой после намотки трансформатора.

Кольца перед намоткой обматывают слоем лакоткани.

Данные обмоток для каждого трансформатора зависят от марки и типоразмера применяемых колец и в случае применения иных колец их легко можно высчитать по формуле 12 [С.Г.Бунин и Л.П.Яйленко. «Справочник радиолюбителя-коротковолновика», Киев, «Техника», 1984 г., стр.154], где значение Rk для Т1 – 50, для Т2 -15, для ТЗ – 25.

L2, L3 имеют по 5 витков провода ПЭВ-1,5 на оправке диаметром 8 мм, длина намотки 16 мм. Если эти данные полностью сохранить, подстройку фильтров производить практически не нужно. L1 – стандартный дроссель 100 мкГн должен выдерживать ток не менее 0,3 А (например, Д-0,3). Конденсаторы в выходных ФНЧ применяются трубчатые или любые высокочастотные с соответствующей реактивной мощностью и рабочим напряжением. Аналогичные требования и к С26 -С31.

Все остальные конденсаторы должны быть также рассчитаны на соответствующие рабочие напряжения. После включения и выставления всех режимов по постоянному току, подключают нагрузку и корректируют АЧХ усилителя с помощью ГСС и лампового вольтметра или измерителя АЧХ (автор применял Х1-50). Подбором С7, С10, С19-С22 можно корректировать характеристику в области 14-30 МГц (рис.1). Для «выравнивания» Рвых на ВЧ диапазонах, возможно, дополнительно понадобится подобрать количество битков у Т1 и Т2.

Рис. 17
КПЕ с разделённым статором может быть применён в качестве анодного конденсатора в П-контуре и обеспечивает оптимальную его настройку, при условии наличия достаточного расстояния между пластинами (чтобы не пробило ВЧ напряжением. Существует ещё один метод уменьшения начальной ёмкости анодного КПЕ. Подключив этот конденсатор к отводу от катушки П-контура, добиваемся уменьшения вносимой в контур ёмкости и уменьшения влияния КПЕ на частоту его настройки - UA9LAQ).
КПЕ с воздушным диэлектриком и вакуумные: Конденсаторы с воздушным диэлектриком легче найти, они и стóят дешевле, но имеют некоторые недостатки, изложенные выше. Вакуумные КПЕ - дороги, их не так легко найти, но только они, порой обеспечивают П-контуру, всё, что мы хотим от него получить и без применения дополнительных переключаемых конденсаторов постоянной ёмкости. Другим достоинством этих конденсаторов является высокое рабочее напряжение, нечувствительность к загрязнениям окружающей атмосферы и изменениям её влажности и давления и могут проводить большие ВЧ токи. Я никогда не слышал о том, чтобы какой-нибудь вакуумный конденсатор прострелило или в нём образовалась дуга. Средний конденсатор вакуумного типа, применяемый в КВ усилителе может пропускать через себя ВЧ токи во много раз превышающие те, которые способен давать реальный РА. Большинство вакуумных конденсаторов изменяют ёмкость от минимальной до максимальной путём поворота оси регулирования (многооборотные). Конструкция вакуумного КПЕ позволяет устанавливать различные отсчётные устройства со сбросом и установкой в определённое положение, требуемое для отдельных диапазонов. Ограничители в начале и конце регулировки ёмкости КПЕ также предусматриваются, чтобы избежать его повреждения. Установка вакуумных КПЕ может оказаться проблемою, а может и нет, так как большинство таких КПЕ содержат и монтажные приспособления, если таковых не предусмотрено, значит, их легко изготовить. Вакуумные КПЕ могут быть смонтированы в любом положении: вертикально, горизонтально, в подвешенном положении.
Для, по-настоящему, мощного усилителя, лучшим выбором будет применение вакуумных КПЕ, которые не прошивает даже при очень больших подводимых к ним мощностях. Да, не дёшевы они, но скупой платит дважды… (Попадание небольшой части воздуха во время хранения, транспортировки или эксплуатации делают такие КПЕ абсолютно непригодными из-за возникновения в них разрядов. Перед эксплуатацией необходимо проверить КПЕ на утечку с помощью высоковольтного тестера и оберегать их от деформации и ударов при эксплуатации - UA9LAQ).
Один момент: чем выше используемое в усилителе анодное напряжение, чем труднее найти подходящий КПЕ с воздушным диэлектриком, который бы выдержал постоянное анодное напряжение плюс ВЧ и не явился причиной возникновения дуг или проблем с перекрытием по ёмкости. При напряжении на аноде ламп(ы) РА в 3 кВ, ещё можно допустить применение КПЕ с воздушным диэлектриком, проблемы применения их при анодном напряжении 4 кВ и более возрастают по экспоненциальному закону. (Автор, видимо, имеет в виду непосредственное подключение КПЕ к аноду лампы без разделительного конденсатора, но и, будучи включенным после разделительного конденсатора, анодный конденсатор с воздушным диэлектриком в П-контуре должен иметь повышенное расстояние между пластинами: с повышением анодного напряжения возрастает выходное сопротивление лампы, а, значит, увеличивается и РЧ напряжение, значит, риск пробоя промежутка между пластинами КПЕ увеличивается - UA9LAQ).
При покупке вакуумных КПЕ, обратите внимание на состояние электродов (пластин) внутри стеклянного корпуса. Если они потеряли свой сияющий медный вид, значит, скорее всего в КПЕ нарушен вакуум. Если, при полном выкручивании регулировочного винта, отсутствует сопротивление, оказываемое при разведении пластин, то, скорее всего, КПЕ - сломан. В общем, перемещение пластин внутри КПЕ должно сопровождаться сопротивлением (требуется усилие), а внутренности КПЕ должны блестеть, как будто их только что начистили. Иначе, лучше обойдите этот КПЕ стороной!
Переключатель диапазонов: Не скупитесь на эту важную часть РА. Купите себе лучший, какой только сможете достать. Иначе, просто, пожалеете! Очень приличные переключатели изготавливает Radio Switch Corp. Их переключатель модели 86 - хорош, однако, самым лучшим является переключатель топ-модели 88. Этот переключатель рассчитан на напряжение 13 кВ и ток 30 А. Даже 5 кВт передатчик не сможет "зажечь дугу” на этом переключателе. Для П- или L- контуров в этом переключателе потребуется, по крайней мере, два набора контактов, но три – лучше. Группа контактов должна быть предусмотрена на каждый диапазон из используемых. Специальный переходник должен быть использован, чтобы соединить ось переключателя в П-контуре с осью переключателя входных контуров (т. е., при переключении диапазонов РА одной ручкой). Если на входе РА используются резисторы (ненастраиваемый вход), тогда, естественно, надобность в переходнике отпадает. Есть ещё возможность применения отдельных переключателей на входе и выходе усилителя, но, чтобы исключить установку переключателей в неверное несоответствующее положение, необходимо применить какую-либо блокировку: механическую или электронную.
На Рис. 17 показана конфигурация переключателя, которая поможет начинающему конструктору понять требования, предъявляемые к П-контуру на диапазоны 160…10 метров. Поохоттесь за подобными переключателями и на ярмарках, рынках, а также поищите в Интернете, пойдут и исправные б/у.
Накальные дроссели: Дроссель в цепи накала лампы с катодом прямого накала абсолютно необходим, при подогревных катодах, как у ламп типа 8877, без такого дросселя можно и обойтись. Катод прямого накала можно найти почти во всех старых мощных лампах со стеклянным баллоном, в качестве нити накала и катода там используется торированный вольфрам. На таком катоде присутствуют как большой ток, так и большое ВЧ напряжение, которые должны быть развязаны от проникновения в другие цепи, так что, тут и устанавливают мощные дроссели. Такой дроссель обычно громоздок, его намотка производится двойным проводом, виток к витку на ферритовом стержне и содержит количество витков, достаточное для полного удаления ВЧ после дросселя. Развязывающие конденсаторы, обычно ставят сразу после дросселя со стороны подвода напряжения накала от блока питания, на корпус. У этого типа дросселя - очень большая величина индуктивности, при этом, он обеспечивает прохождение через себя больших токов, Я опробовал также использование тороидального дросселя и остался им доволен, тем более, что этот дроссель имел и небольшие габариты.
В лампах с подогревными катодами, такой катод представляет собой оксидированный "рукав”, одетый на нить накала, которая его подогревает для получения электронной эмиссии. Катоды такого типа требуют меньших токов накала, чем первые, рассмотренные выше, и не допускают распространения ВЧ, так как катодный "рукав” оказывает постоянное экранирующее действие (внешняя сторона, сообразно со скин-эффектом излучает и втянута в схему функционирования ВЧ токов, нижняя РЧ токам не подвержена и служит замкнутым экраном, тут можно ещё вспомнить и про токи Фуко - UA9LAQ). Тем не менее, дроссели в цепь накала включать нужно, чтобы исключить попадание, пусть даже случайного выброса ВЧ в питающий комплекс. Дроссель накала в схемах с лампами, имеющими подогревные катоды, уже не должен быть большим, громоздким, иметь большую индуктивность, поскольку действующие в цепи накала ВЧ токи малы. Дроссель имеет небольшие габариты, намотан двойным проводом достаточного сечения для пропускания тока накала в резиновой или тефлоновой изоляции, намотка производится на небольшом кольцевом или стержневом ферритовом сердечнике. Индуктивность дросселя для работы на диапазонах 160…10 метров должна составлять 30…300 мкГн. Развязывающие конденсаторы включают с обоих проводов накала на корпус усилителя в точке подключения к дросселю со стороны блока питания. Ставьте также конденсаторы между проводами накала со стороны цоколя лампы и катодом. Связь нити накала по ВЧ с катодом будет способствовать выравниванию ВЧ потенциалов на обоих. Это будет препятствовать различного рода неоднородностям в сигналах: вспышкам, прострелам, хрустам, пробоям на нить накала, уравняет оба края нити накала по ВЧ, что устранит колебания накального напряжения.


Рис. 18
На Рис. 18 приведена типовая схема включения лампы с подогревным катодом с обычным накальным дросселем.
ALC: Эту схему необходимо делать обязательно. Обойтись без неё можно только в случае, если Вы используете лампу, которая может раскачиваться полной мощностью имеющегося возбудителя. Примером может являтся лампа 3CX1200A7, которая может раскачиваться мощностью до 120 Вт, включительно. Тем не менее, независимо от того, используете Вы лампу 8877 или 3CX800A7, мощности в 120 Вт вполне хватит, чтобы систематически выводить из строя сетки. Система ALC препятствует этому, но если Вам "нравится” менять лампы чаще, чем это требуется, не делайте никакой ALC. Лучшей точкой привязки возбудителя к усилителю является точка между реле приём/передача на входе и входным настраиваемым устройством.
Схема ALC детектирует в усилителе небольшую часть входного ВЧ сигнала возбудителя. Этот выпрямленный сигнал - отрицательной полярности и может изменяться в пределах от -1 до -12 В. Изменяющийся в отрицательную сторону сигнал подаётся обратно в возбудитель, который смещает усилитель мощности в возбудителе, а тот в свою очередь уменьшает выходную мощность возбудителя и этим предотвращает перекачку оконечного РА.
Процедура установки порога ALC заключается в следующем:
1. Настроить усилитель на полную выходную мощность.
2. Подстроить потенциометром установки порога ALC такой уровень, чтобы в выходном сигнале появилось едва заметное уменьшение его мощности.
3. Всё. Установка закончена.
После установки порога ALC, уровень ВЧ раскачки может быть увеличен или уменьшен, но максимальная выходная мощность усилителя, установленная с помощью регулятора ALC, уже не будет превышена.
Расположение регулировочного органа системы ALC может быть как на задней, так и на передней панели управления, но, в любом случае, хорошо помечено. Установочная регулировка оправдывает себя на практике, так как таковая не может быть случайно сбитой (для регулировки нужно взять отвёртку да ещё залезть под крышку, сняв возможный фиксатор). Однажды установленная, регулировка порога ALC редко изменяется.
На Рис. 19 показана типовая схема системы ALC, простая и эффективная.

Рис. 19
Регулироки: Наиболее заметная часть усилителя - панель регуляторов, она же и самая сложная. Есть много способов расположения и управления аппаратом. Насколько проста будет панель управления зависит от разработчика и изготовителя.
Существуют готовые платы, которые можно приобрести и установить в усилитель, но это немного не то, ведь самому создать усилитель с нуля – намного интереснее, тем не менее, для начинающего - это выход из положения. Помните, чем сложнее аппарат, тем труднее с ним управляться и ремонтировать. Простота и надёжность, - вот из чего нужно исходить при разработке усилителя. Если конструктор хочет создать полностью автоматизированный усилитель и чувствует, что может справиться с задачей, то флаг ему в руки… Трудновато будет, да и проблем будет, проблем… Для начинающих советую, строить самые простые, надёжные, без наворотов усилители. После того, как построите попроще, будут и более сложные аппараты, более изящные.
Вот так посмотрите на проблему: ”Ты - инженер-разработчик, ты решил, что сделаешь аппарат, сколько бы времени и сил это не потребовало!”
Послесловие: В наше время, когда легко купить и эксплуатировать любительское оборудование, какое хочешь, легко забыть о том удовлетворении, которое приносит самостоятельное его изготовление. Тот, кто покупает и потом играет дорогой игрушкой, никогда не испытает этого чувства. Тем, кто, всё-таки, хочет испытать его, приложить собственные руки и голову и сделать свой ВЧ усилитель, как их делали в своё время наши коллеги предшественники и посвящена настоящая статья. Невозможно описать словами то чувство завершённости, исполненного долга, удовлетворения от полученного опыта. А ещё и приобретёте чего-нибудь новенького в процессе…
Если у Вас есть вопросы, я с удовольствием поделюсь знаниями и опытом с Вами, если Вы этого искренне желаете.
73 de Matt Erickson, KK5DR
Свободный перевод с английского: Виктор Беседин (UA9LAQ) [email protected]
г. Тюмень ноябрь, 2003 г