Усилители и трансиверы сделанные левой рукой. Усилитель мощности на IRF630 для КВ радиостанции Трансиверы и усилители сделанные левой рукой

КВ усилитель мощности на двух лампах ГИ-7Б.


Усилитель с использованием двух ламп ГИ-7Б выполнен по традиционной схеме. Несмотря на то, что данная лампа разработана для работы в импульсном режиме при анодной модуляции, при подаче напряжения возбуждении в катод лампы, и условии использования только левой части анодно-сеточных характеристик и принятии дополнительных мер согласования каскадов по сопротивлению, удается получить удовлетворительную линейность усиления благодаря эффекту возникновения автоматической обратной связи по току.

Блок усилителя.

Конструкция усилителя проста и дополнительных пояснений не требует. На рис.1 приведена электрическая принципиальная схема блока усилителя мощности. При проектировании усилителя была предпринята попытка уменьшить вдвое эквивалентное сопротивление ламп на частоте 29,7 МГц. В виду того, что полученное эквивалентное сопротивление ламп достаточно высоко, реализация индуктора с достаточно высоким КПД для диапазона 10 м не представляется возможным. Для этого были использованы два дополнительных индуктора - L2, L3. Входное сопротивление катодной части усилителя при максимальном входном сигнале равно 43 Ом, то есть близко к 50 Ом. Однако вопреки бытующему мнению, обойтись без дополнительного согласования выходного каскада трансивера с входной частью усилителя невозможно.

Электронно-вакуумные приборы представляют собой реактивную нагрузку. А это значит, что входное сопротивление лампы изменяется с изменением уровня напряжения возбуждения и соответственно с изменением протекающего через лампу тока. Т.е. при максимальном напряжении возбуждения в катод, отрицательной полуволной сигнала, будет получено минимальное входное сопротивление, равное в данном случае 43 Ом. При минимальном уровне напряжения входное сопротивление лампы становится чрезвычайно большим, обусловленным током покоя и статическими параметрами лампы. При переходе уровня сигнала возбуждения на положительную полуволну, входное сопротивление лампы стремится к бесконечности и будет, практически, определятся межэлектродными емкостями и частотой сигнала возбуждения.

В таких условиях ни использование согласующих трансформаторов, ни автоматические антенные тюнеры современных трансиверов не в состоянии обеспечить согласование трансиверов с выходными каскадами. Игнорирование необходимости принятия дополнительных мер для согласования трансивера с усилителем ведет к нарушению линейной работы выходного каскада трансивера и возникновению повышенного уровня интермодуляционных искажений в самом усилителе.

Основные параметры ламп в используемом усилителе:

  • Напряжение анода лампы, В ………………….. 2500
  • Напряжение накала, В ………………………. 12,6... 13,2
  • Максимальный анодный ток ламп, А…………..0,7
  • Ток покоя, мА……………………………………50

Высоковольтный блок питания.

На рис.2 приведена электрическая принципиальная схема высоковольтного блока питания. Высоковольтный блок питания выполнен в отдельном корпусе, с минимально возможным числом компонентов. Для ограничения зарядного тока конденсатора фильтра, включение выполнено по двухступенчатой схеме. Высокое напряжение от блока питания к усилителю подается через коаксиальные разъемы и коаксиальный кабель. В целях повышения безопасности экранная оплетка кабеля соединена с корпусом блока питания и усилителя. Мощность трансформатора для работы только в режиме SSB должна быть не менее 1 кВт.

Если предполагается использовать все виды модуляции, мощность трансформатора должна быть не менее 1,5 кВт. Выходное напряжение блока питания должно быть при отдаваемом токе 50 мА (ток покоя усилителя) не менее 2500 В. Для уменьшения опасности возникновения перенапряжений, на выходе блока питания, связанных с переходными процессами во время эксплуатации усилителя и холостым ходом трансформатора, на выходе фильтра установлено нагрузочное сопротивление R4. Кратковременные перенапряжения могут достигать значительных величин и вызывать возникновение дуги внутри корпуса лампы.

При вводе в работу усилителя необходимо помнить, что при установке новой лампы или если она не использовалась более 3-х месяцев, необходимо начинать ее использование при пониженной генерируемой мощности. Только убедившись, что лампы восстановили вакуум и стабильны, следует переходить на использование усилителя при максимальной выходной мощности. Практика показала, что первое время при вводе ламп в эксплуатацию, рекомендуется использовать их в течение какого то времени примерно на 50% отдаваемой мощности. После чего, постепенно, если не возникает электрических пробоев, лампы вводятся на полную расчетную мощность. Наиболее ответственным в этот период является момент настройки выходного контура в резонанс при помощи КПЕ со стороны анодов ламп, т.к. это соответствует возникновению максимального суммарного напряжения на аноде. Контроль за режимом ламп осуществляется с помощью миллиамперметра в цепи питания управляющих сеток.

При резонансе контура и достаточной мощности возбуждения возникает максимальная амплитуда переменного напряжения на аноде, в связи с чем остаточное напряжение на аноде становится ниже минимально допустимого, в результате возникает эффект перехвата электронного потока сетками ламп. Управление этим процессом осуществляется своевременным увеличением передачи мощности в нагрузку с помощью выходного переменного конденсатора Pi-контура или регулированием мощности возбуждения усилителя. И то и другое ведет к уменьшению переменного напряжения на аноде и вместе с этим к уменьшению тока управляющих сеток.

Схема управления

Блок управления усилителем выполнен по упрощенной схеме, и не имеет каких либо особенностей. На рис.3 приведена электрическая принципиальная схема блока управления. Стабилизатор +27В выполнен на ИМС КРЕН12А. Для выбора рабочей точки ламп использована схема на транзисторах VT2, VT3. Предохранитель FU2, предотвращает повреждение ламп и полупроводниковых приборов в катодной части ламп в случае возникновения разряда внутри корпуса лампы. На транзисторе VT4 выполнена схема защиты по току управляющей сетки лампы. Ток отсечки выбирается меньше максимального тока одной лампы, так как изначально предполагается использовать только левую часть анодно-сеточных характеристик ламп. Данная мера обеспечит так же защиту обеих ламп по токам сеток.

Элементы схемы управления коммутационных реле на транзисторе VT1 обеспечивают необходимую последовательность переключения реле. При срабатывании защиты по току сетки ламп, функция "reset" выполняется выключением и повторным включением выключателя S3 "Standby". Реле К1 уменьшает электродинамические нагрузки на компоненты схемы и накальные цепи ламп. Задержка составляет 1...2с. Неоновые лампы установленные в выключателях, представляют собой нелинейные элементы, которые снимают возникающие перенапряжения в цепях обусловленные переходными процессами.

Согласование усилителя с нагрузкой

Согласование усилителя с нагрузкой не отличается от типовой. На вход усилителя подается сигнал возбуждения, примерно 30% от необходимого для полного возбуждения. При полностью введенном роторе конденсатора Pi-контура со стороны антенны, вращением ротора конденсатора Pi-контура со стороны анодов ламп, находится резонанс контурной системы. Резонанс определяется по максимальному току управляющих сеток. Если ток сеток отсутствует или имеется обратный ток, то необходимо увеличить мощность возбуждения.

Получив максимум сеточного тока, который не должен превышать максимально допустимого, необходимо выводить пластины конденсатора со стороны подключения антенны, подавая тем самым запасенную контуром мощность в нагрузку. При этом необходимо контролировать, каким либо методом, мощность, отдаваемую в фидер. При полученном максимуме передачи энергии в фидер, ток экранной сетки будет стремиться к минимуму. После чего можно увеличить снова мощность возбуждения и повторить процедуру. Это делается до тех пор, пока не будет получен максимальный анодный ток при минимальном токе управляющих сеток и полной мощности в фидере.

Определив необходимую максимальную мощность возбуждения, можно установить порог срабатывания ALC резистором R7 расположенным в блоке усилителя.

Детали

В данном усилителе были использованы следующие коммутационные реле. Реле, которые были использованы в высоковольтном блоке питания:

  • К1 РПУ-ОУХЛ4 220/8А;
  • К2 РПУ-ОУХЛ4 24-27/8А;

Реле, которые были использованы в схеме управления:

  • К1 РЭС9 паспорт РС4.529.029-00;
  • К2 РЭС22 паспорт РФ4.523.023-00;
  • КЗ РПВ2/7 паспорт РС4.521.952;
  • К4 РЭВ14 паспорт РФ4.562.001-00;
  • К5 РЭС9 паспорт РС4.529.029-00;

Основные параметры усилителя на двух лампах ГИ-7Б

При расчете привязка сделана к напряжению на анодах ламп (2500 В) и току покоя для двух ламп (0,05 А). Расчет линейного усилителя производился при помощи программы "RF Amplifier"s Developer 2001".

Результаты расчета параметров анодной цепи усилителя для одной лампы

  • Анодное напряжение лампы, В ……………………………………………………………….. 2500
  • Максимально допустимое напряжение сетки, В ……………………………………………… 80
  • Анодный ток лампы в режиме несущей, А…………………………………………………… 0,35
  • Ток покоя лампы, А…………………………………………………………………………… 0,025
  • Угол отсечки анодного тока, град…………………………………………………………….. 96,41
  • Максимальный ток анода, А ………………………………………………………………….. 1,034
  • Максимальный анодный ток первой гармоники, А…………………………………………. 0,531
  • Усиление лампы при минимальном остаточном напряжении………………………………. 4,308
  • Коэффициент напряженности режима лампы……………………………………………….. 0,904
  • Амплитудное значение переменного напряжения генерируемого анодом лампы, В……… 2260
  • Минимальное остаточное напряжение на аноде, В………………………………………….. 240
  • Максимальная амплитуда суммарного напряжения на аноде, В………………………….… 4160
  • Колебательная мощность на аноде лампы, Вт……………………………………………….. 600,03
  • Коэффициент для SSB сигнала с учетом пикфактора (р-4) ………………………………… 0,35
  • Средняя колебательная мощность SSB сигнала, Вт ………………………………………... 73,504
  • Максимальная мощность, подводимая к аноду, Вт………………………………………… 875
  • Средний КПД лампы для SSB сигнала………………………………………………………..0,23
  • Средняя подводимая к аноду мощность, Вт………………………………………………… 319,583
  • КПД лампы …………………………………………………………………………………… 0,686
  • Максимальная мощность, рассеиваемая на аноде, Вт ……………………………………… 274,97
  • Средняя мощность, рассеиваемая на аноде, Вт …………………………………………… 246,079
  • Мощность, рассеиваемая на аноде при токе покоя, Вт …………………………………… 62,5
  • Эквивалентное сопротивление анодной цепи лампы, Ом………………………………… 4256

Параметры для второй гармоники

  • Пиковый анодный ток второй гармоники, А ………………………………………………….0,194
  • Колебательная мощность второй гармоники, Вт……………………………………………. 219,22
  • Эквивалентное сопротивление анода для второй гармоники, Ом …………………………. 11649

Параметры для третьей гармоники

  • Пиковый анодный ток третьей гармоники, А………………………………………………… 0,032
  • Колебательная мощность третьей гармоники, Вт……………………………………………. 36,16
  • Эквивалентное сопротивление анода для третьей гармоники, Ом ………………………… 70625

При определении основных параметров для двух ламп, выбранный параметр необходимо увеличить или уменьшить в 2 раза исходя из математической логики.

Таблица 1.

Частота, МГц

1,85

7,05

10,12

14,15

18,1

21,2

24,9

Cin, пФ

L, мкГн

19,03

9,78

4,99

3,12

1,63

0,73

0,53

Cout, пф

2251

1157

13,6

19,1

24,6

28,0

Индуктор выполняется из посеребренной медной трубки диаметром 6 мм. Требование к конструкции - высокая добротность ненагруженного индуктора. Результаты расчета значений элементов анодного П-контура усилителя для диапазонов 160...12 м (для двух ламп) приведены в табл.1.

Таблица 2.

Частота, Мгц

1,85

7,05

10,12

14,15

18,1

21,2

24,9

28,6

L, мкГн

17,43

8,18

3,39

1,49

0,58

0,32

0,12

0,43

L, мкГн +20%

20,92

9,82

4,07

1,79

1,44

0,38

0,14

0,52

Диаметр каркаса, мм

Диаметр провода, мм

Расстояние между витками, мм

Количество витков

16,5

Параметры выходного П-контура из 3-х соединенных последовательно индукторов приведены в табл. 2. Влияние элементов металлического шасси на индукторы было принято равным 20%.

Результаты расчета анодного П-контура усилителя для диапазона 10м (для двух ламп)

  • Частота, МГц ………………………………………….29,7
  • Емкость конденсатора Сinp пФ ……………………… 30
  • Индуктивность катушки, мкГн ……………………….0,43
  • Емкость конденсатора Couf пФ ……………………… 352
  • Q полученное………………………………………….19,1

При этом были использованы следующие исходные данные:

Таблица 3.

Частота, Мгц

1,85

7,05

10,12

14,15

18,1

21,2

24,9

29,7

Cin, пФ

2677

1355

L, мкГн

3,69

1,89

0,97

0,67

0,48

0,38

0,32

0,27

0,23

Cout, пф

2838

1458

Результаты расчета входных согласующих П-контуров усилителя приведены в табл. 3. При этом были использованы следующие исходные данные:

Таблица 4.

Частота, Мгц

1.85

7.05

10.12

14.15

18.1

21.2

24.9

28.6

L, мкГн

3,69

1,89

0,97

0,67

0,48

0,38

0,32

0,27

0,24

L, мкГн + 20%

4,43

2,27

1,16

0,58

0,46

0,38

0,32

0,29

Внутренний диаметр L, мм

Диаметр провода L, мм

Расстояние между витками L, мм

Количество витков L

11,9

Q нагруженная

КПД

0,91

0,93

0,94

0,94

0,94

0,94

0,94

0,95

0,95

Перекрытие, кГц

1200

2350

3373

4717

6033

7067

8300

9533

В табл. 4 приведены параметры индукторов входных П-контуров для каждого диапазона. Влияние металлических частей шасси на индукторы было принято равным 20%. Несмотря на большое перекрытие по частоте, особенно на верхних диапазонах, реальное согласование по сопротивлению возможно только в пределах одного диапазона. При использовании одного фильтра для двух и более диапазонов, необходимо применять сложные элептические фильтры.

Cкачать схемы усилителя мощности - zip 730kb.

Данный усилитель является развитием идеи предложенной Игорем Гончаренко (DL2KQ) в статье «Легкий и мощный PA», которую можно прочитать в интернете по ссылке http://dl2kq.de/pa/1-1.htm . Поэтому я никого не агитирую, а просто хочу сказать, что анодный трансформатор - деталь тяжелая и необязательная в усилителе.

Написанная статья является описанием изготовленного усилителя, а не научным трудом, претендующим на открытие. Каждый выбирает то , что ему по душе.

Не забывайте, в усилителе присутствует высокое (1200 В) напряжение, опасное для жизни, правила электробезопастности никто не отменял! Не включайте усилитель в сеть со снятой крышкой!

Решение застабилизировать накал лампы принято только из-за особенностей местной электросети, напряжение которой гуляет от 180 до 240 В, а значит напряжение накала будет гулять от 10 до 13 В, мне просто хотелось забыть про эту проблему. Хотя если у радиолюбителя таких проблем нет, то стабилизатор накала можно не делать, а 12 В с обмотки накального трансформатора подать на С13 Рис.1.

Вход УМ - широкополосный, но для улучшения работы усилителя резистор Rк лучше заменить на переключаемые диапазонные фильтры. Резистор R1 - безындукционный, например ТВО.

Входной трансформатор Твх - типа «бинокль» собран из шести ферритовых колец М2000НМ-1 К20х12х6, намотан одновременно тремя проводами (один из них в фторопластовой изоляции - входная обмотка) и каждая обмотка содержит по 2 витка.

Антенное реле ТКЕ-54, три группы контактов К1.1 - К1.3 включены параллельно и используются для коммутации антенной цепи, а контакт К1.4 для включения входного реле Р2 - РЭН-34, контакты К2.1 - К2.2 включены так же параллельно.

Анодный L2 и защитный Др защ дроссели намотаны на ферритовых стержнях марки М400НН диаметром 10 и длиной 100 мм каждый, проводом ПЭВ-2 диаметром 0,27 мм, длина намотки - 70 мм.

Разделительные конденсаторы С7 и С10 - емкостью 1000 - 2000 пФ типа К15-У, с трехкратным запасом по напряжению и способные выдержать соответствующую реактивную мощность, тут экономить не следует. Попытка применить в ВЧ цепи «что попало под руку» ничем хорошим не заканчивается. С5 и С6 типа К15-У, КВИ-3.

В П-контуре использован вариометр, (обмотки включены параллельно) что позволило согласовать УМ с антенной Inv-V, питаемой длинной линией во всем диапазоне частот от 3 до 14 МГц. А конденсатор С8 (зазор между пластинами для Uа=1200 В около 0,5 - 0,8 мм) был заменен на галетный переключатель и четыре конденсатора типа К15-У на 33, 68, 150 и 220 пФ. Но детали П-контура могут быть и иными, в зависимости от возможностей радиолюбителя.

Конденсаторы С12 и С14 - типа КСО на 250 В.

Рис. 2.

Узел Auto TX на транзисторе VT1 Рис. 1 переводит УМ в режим передачи при появлении ВЧ сигнала на входе, это удобно для цифровых видов связи. Переключатель Auto TX выведен на переднюю панель.

На зло классической традиции я не стал запирать лампу на прием. Во первых нужно было бы применить реле с хорошей изоляцией между контактами и обмоткой (не менее 2 кВ), во вторых при отсутствии анодного тока немножко перегревается катод. Был изготовлен стабилизатор смещения (Рис.3) - транзисторный аналог стабилитрона с регулировкой напряжения стабилизации от 9 до 18 В, что позволило корректировать ток покоя (который составляет 40 - 50 мА) в процессе эксплуатации.

Рис. 3.

При изменении тока через стабилизатор от 40 до 300 мА напряжение стабилизации изменяется на 0,2 В. Транзистор VT1ст Рис. 3 установлен на радиатор.

Узел питания показан на Рис. 4.

Накальный трансформатор Т1 с хорошей изоляцией между обмотками (ТПП, ТН). Стабилизатор питания накала собран на транзисторах VT1, VT2 и интегральном стабилизаторе V1. Стабилизатор имеет ограничение по току нагрузки на уровне 2,3 А (определяется сопротивлением резистора R7 Рис.4), что уменьшает токовые перегрузки подогревателя при включении.

На транзисторе VT3 собран таймер, который примерно через 15 сек после включения УМ замыкает резистор R2, ограничивающий ток заряда электролитических конденсаторов анодного выпрямителя. Напряжение +27 В используется для питания реле и иллюминации. Транзисторы VT2, VT3 и диодная сборка VD5 Рис. 4 установлены на радиаторах.

Анодный выпрямитель на диодах D1 - D4 собран по схеме учетверения сетевого напряжения, хотя напряжение анода 1200 В (да еще -100 В просадка при нагрузке) для ГИ-7Б несколько маловато. Поэтому целесообразнее собрать выпрямитель по схеме Рис. 5 для получения 1800 В (схема использована из статьи Игоря Гончаренко, DL2KQ). Каждый из диодов D1 - D4 зашунтирован конденсатором 1000 пФ 1000 В. Дроссель ДР от сетевого фильтра импульсного блока питания видеомонитора.

Рис. 5

В результате на эквиваленте нагрузки 50 Ом 200 Вт при входной мощности 15 Вт получено на частоте 3,600 МГц - 180 Вт (ток анода 250 мА), а на частоте 14,200 МГц - 190 Вт (Iа 260 мА).

Внешний вид учетверителя:

Анодный блок:

Ламповый блок:

Монтаж общий:

Внешний вид:

Изготовленный усилитель (размеры корпуса 350х310х160 мм) получился безопаснее любого импульсного компьютерного блока питания, ток утечки на землю составляет 0,05 мА. С момента ввода в эксплуатацию УМ, он пережил несколько SSB, RTTY и PSK тестов, а также при повседневной работе, показал себя надежным изделием.

UR5YW, Мельничук Василий, г. Черновцы, Украина.

E-mail: [email protected]

Ламповый кв усилитель мощности собран на 4-х лампах ГУ-50. Включенных параллельно по схеме с общими сетками, и предназначен для работы в диапазонах 80, 40, 30, 20, 15 и 10 м. Если монтаж усилителя выполнен согласно требованиям, предъявляемым к таким устройствам, не требуется нейтрализация проходной емкости ламп. Максимальная выходная мощность усилителя - 350 - 400 Вт.Для питания усилителя используются два силовых трансформатора. Выходы выпрямителей на диодах VD1 - VD4 и VD5 - VD8 включены параллельно и нагружены на емкостный фильтр (электролитические конденсаторы С1 -СЗ). Параллельно каждому диоду выпрямителя включен высокоомный резистор и конденсатор небольшой емкости. Что повышает электрическую “прочность” выпрямителей и уменьшает пульсации выходного напряжения.Анодное напряжение составляет приблизительно 1000 В.
Усилитель мощности

Постоянное напряжение +15 В получается на выходе однополупериодного выпрямителя VD9-C4 и используется для питания реле и светодиодов, индицирующих режим работы усилителя.
Напряжение накала подается на подогреватели ламп через дроссель Др6.
На входе усилителя установлен фильтр нижних частот C6-L1-C7 с частотой среза около 30 МГц. Тем не менее, учитывая, что входное сопротивление усилителя довольно низкое и меняется в зависимости от диапазона. Между усилителем и трансивером желательно установить согласующее устройство. Хорошо согласованный с трансивером усилитель при небольшой мощности возбуждения (около 50 Вт) позволяет получить выходную мощность 400 Вт (и даже больше!). И обеспечивает на выходе спектрально чистый сигнал (конечно, если трансивер и усилитель исправны и работают в номинальных режимах).

Если ламповый КВ усилитель мощности будет эксплуатироваться с трансивером,

на выходе которого установлен П-контур. То при использовании короткого соединительного кабеля между этими устройствами согласующее устройство не требуется. На выходе усилителя установлен традиционный П-контур, но т.к. “анодный” конденсатор переменной емкости С11 имеет малые начальную и максимальную емкость, к нему в диапазоне 80 м параллельно подключается конденсатор С12.
При замыкании контактов переключателя S2.1 срабатывает реле К1, с помощью контактов которого выход трансивера подключается к входу усилителя. Выход усилителя к антенне, а катоды ламп VL1 - VL4 - к общему проводу (через резистор R2).

Анодный дроссель Др7 намотан на ребристом керамическом каркасе 40 мм и содержит 30 витков провода 0,5 мм.
Резистор R2 состоит из двух включенных параллельно резисторов сопротивлением по 1 Ом.
Катушка L1 - бескаркасная, намотана проводом 0,1 мм на оправке 12 мм и содержит 11 витков, катушка L2 - 9 витков посеребренного провода 3 мм, намотанного на ребристом керамическом каркасе. Положение отводов подбирается при настройке КСВ на выходе усилителя не должен превышать 2. Кроме того, рекомендуется подключать антенну к усилителю через фильтры нижних частот, а при длительной работе в режиме передачи применять принудительное охлаждение.

Схему в формате Splan можно скачать

Ред. 04.12.2018г.

07.05.2013

Закончил сборку своего первого КВ-УМ на металлокерамических лампах ГИ-7Б с бестрансформаторным питанием по схеме уважаемого И.Гончаренко . Фотографии процесса сборки выложены в .

04.01.2015

Проанализировав информацию на форумах, касательно вопросов построения бестрансформаторных блоков питания, решил переделать первоначальный вариант своего б/п, в котором использовалось 6 емкостей по 330мкФx400В. При токе нагрузки более 300мА, просадка анодного напряжения была существенной... Собственно, согласно рекомендациям И.Гончаренко, нагрузочная способность второй ступени б/п как раз составляла 300мА, т.к. суммарная емкость конденсаторов в каждом плече составляла около 165мкФ.

Добавлено 08.12.2016

Как выяснилось позже, просадка напряжения была связана с падением напряжения в сети... Однако, в любом случае, умножения на 4 для ГИ-7Б недостаточно. Лучше применить умножение на 6 или на 8.

Теперь, в первой ступени будут стоять по два конденсатора 330мкФx400В в плече (с целью разделения токов), во второй ступени будут стоять 4 конденсатора 680мкФx400В. В результате, ожидаемая нагрузочная способность б/п должна будет возрасти до 600мА.

Так же, планирую отделить б/п от блока ламп тепловым экраном из стеклотекстолита.

06.01.2015

Переделка усилителя закончена. Новые фотографии выложил .

Помимо переделки блока питания (вот файл для моделировщика Electronics Workbrench Version 5.12), заменил и анодный дроссель. Изготовил копию дросселя Ameritron. Использовалась керамическая трубка диаметром 26,5мм при толщине стенки 2,6мм и обмоточный провод 0,355мм по лаку. Индуктивность дросселя составила 200мкГн. Старый дроссель, выполненный на фторопластовом стержне диаметром 14мм проводом ПЭЛШО-0,56 имел индуктивность всего лишь 40мкГн. Первый резонанс нового дросселя находится на частоте 6,5МГц, второй - на частоте около 12,6МГц...

Откалибровал измеритель анодного тока по эталонному миллиамперметру на 500мА.

Рабочие данные усилителя: при уровне входного сигнала 30Вт - на эквивалент идет 300Вт при токе 440мА. Измерялось на диапазоне 40м. К сожалению, просадку анодного напряжения пока не измерял. Согласно , после переделки б/п, анодное не должно снижаться менее 1200В при токе до 1А. В принципе, ранее, при таком же анодном, каждую из ламп я легко раскачивал до 200Вт при токе 300мА, так что, для двух ламп при токе 600мА, отдаваемая мощность может достигать 400Вт. Однако, не вижу в этом особого смысла, т.к. анодное напряжение изначально мало для этих ламп...

08.01.2015

Вчера обратил внимание на один неприятный момент в работе усилителя. Вход не хотел должным образом согласовываться с трансивером через внешний П-контур и, самое главное - через 20сек. в режиме нажатия ключа, начинал вырастать анодный ток и постепенно падала выходная мощность до 200Вт. Подсказали (R2AC), что дело может быть во входном трансформаторе на ферритовых трубках... Установлены трубки от мониторного кабеля с полу-круглыми торцами. Где-то на форуме читал, что они не годятся для таких целей и есть трубки с прямыми торцами - они де подходят больше... К сожалению, в наличии оказался только один комплект такого феррита и он уже был задействован в с ГУ-50 - снимать не стал...

Провел лабораторную работу с несколькими видами ферритов, имеющихся в наличии и разным кол-вом витков в обмотках. Проверил входной ВЧ-трансформатор в УМ и оказалось, что во всех трех обмотках сделано по три витка. Отмотал один виток от первичной обмотки и замерил входное сопротивление усилителя в режиме передачи, подключив на вход анализатор АА330-М. Сопротивление оказалось 62Ом на диапазоне 40м. После этого вход усилителя прекрасно согласовывался с выходом трансивера и эффект снижения мощности уже не наблюдался.

09.09.2015

О проверке линейности усилителя двухтональным сигналом написал . моей методики измерения уровня IMD, которую я стал применять несколько позднее...

15.05.2016

Вчера был впервые получен, а сегодня закреплен на диапазонах 40-30-20м результат: 400Вт полезной мощности (ток - 440мА) при использовании нового умножителя напряжения на 6. Для этой цели был извлечен старый умножитель напряжения на 4 и подключен новый, в режиме теста.


Материал о вариантах умножителей размещен .

Данный умножитель по своим габаритам в имеющийся корпус не помещается. Блок питания будет выполнен в отдельном корпусе, а освободившееся внутри усилителя место, хочу попробовать использовать для размещения входных диапазонных П-контуров...

При токе около 500мА, умножитель абсолютно не греется и не создает какого-либо шума.

Изменилось эквивалентное сопротивление и П-контур необходимо будет подвергнуть некоторой переделке. Опасался, что будет прошивать прореженный КПЕ, но этого пока не произошло ни разу.

21.05.2016

Сегодня в эфире ребята подсказали, что PA несколько меняет характер звучания сигнала с трансивера. Порекомендовали увеличить ток покоя. Исходный ток был 40mA на две лампы (Д815Е+Д815Д). После замены одного из стабилитронов, ток покоя стал 100mA (Д815Е+Д815В) и корреспонденты отметили заметное улучшение качества сигнала. Уровень внеполосных излучений так же в норме (контроль на панораме Icom IC-7300).

По хорошему, лучше набрать цепь смещения из стабилитронов с допустимым током 1А (буквы А,Б,В), однако, под рукой был только один стабилитрон с буквой "В".

При попытке перевести металлокерамический триод в класс, близкий классу В - искажения сигнала, вносимые PA, становятся заметны корреспондентам в эфире... Потому, при токе анодов 440mA и токе покоя 100mA, выходная мощность у моего PA составила 400Вт. Т.е. КПД получился около 0,53. Ку по мощности составил 13. Добротность П-контура, который был переделан - 12.

Возможно, при использовании аналогичного питания 1,8кВ при использовании пентода ГК-71, можно было бы получить большую выходную мощность при сохранении качества сигнала либо аналогичную, при меньшем значении тока анода. Со временем, обязательно проверю это на практике!

Поработав в эфире с пол-часа в режиме неспешного диалога, заметил, что усилитель разогрелся и вентиляторы гонят теплый воздух. Оно и понятно, на анодах постоянно расходуется 180Вт мощности при токе покоя. Так же и с точки зрения экономии электроэнергии, это далеко не оптимальный вариант. Пришлось делать цепь запирания ламп во время RX. Задействовал дополнительный стабилитрон Д817Г (поставил в разрыв между двумя рабочими стабилитронами, т.к. это было удобно конструктивно) и задействовал свободную пару контактов входного реле РЭН29. Последнее пришлось "оторвать" от шасси, проложив текстолитовую прокладку между шасси и корпусом реле. Стабилитроны Д815 установлены на небольших радиаторах из уголка 40x15x35, Д817 закреплен между ними на текстолитовую опорную пластину без радиатора.

Было сомнение относительно возможных наводок при коммутации и способности изоляции обмотки реле выдержать разность потенциалов около 900В (относительно контактной группы), что является предельным значением данного реле по паспорту. К счастью, опасения не подтвердились. Коммутация работает стабильно.

25.05.2016

Переделал цепь смещения. Теперь установлена цепочка из трех Д815А и одного Д815Б. Ток покоя - 90mA при напряжении смещения около 23В. В разрыв цепочки включен стабилитрон Д817Г, закорачиваемый при TX. Поскольку, расчетный ток катода не будет превышать 0,6A и рассеиваемая мощность не превысит 3-4Вт - стабилитроны установлены без радиаторов. Кроме того, они находятся в поле обдува.


При токе покоя двух ламп около 90-100mA, усилитель работает в классе AB1 до тех пор, пока амплитуда входного сигнала (на отрицательном полупериоде) не достигнет уровня напряжения смещения на катоде и далее - в классе АВ2 (с током управляющей сетки). По некоторым , ток сетки(ок) не должен превышать 30% от тока катода. По другим - 20...25%. Желательно контролировать ток сетки отдельным прибором, либо вычитать разницу между током катода и током анода. Предполагаю, что ориентиром здесь может служить параметр максимально допустимой рассеиваемой мощности на сетке одной лампы - 7Вт и при его превышении, сигнал будет портиться. Так же, возможны прострелы и даже выход лампы из строя...

14.12.2016

Сегодня провел лабораторную работу на предмет измерения Ку по мощности и определения токов сеток двух триодов ГИ-7Б, в зависимости от мощности раскачки. Результаты свел в таблицу.

Uэфф,В Pвх,Вт I,mA в "+" I,mA в "-" Ig,mA Uпит,В Pвых,Вт Ку по мощ. КПД
20.5 8.4 270 270 24 1780 200 23.8 0.42
26.5 14 340 340 56 1730 300 21.4 0.53
32 20.5 400 400 80 1700 380 18.5 0.56
36 26 440 440 100 1670 400 15.3 0.53

Пояснения к таблице:

Uэфф - ВЧ напряжение с трансивера, измеренное на эквиваленте нагрузки прибором ВУ-15 (если измерять напряжение при подключении П-контура, согласующего выход трансивера со входом PA, то уровень ВЧ напряжения - ниже);

Pвх - мощность раскачки с трансивера на эквиваленте 50Ом равная Uэфф x Uэфф / 50;

I в "+" - ток, измеренный в положительном полюсе бестрансформаторного умножителя напряжения на 6;

I в "-" - ток, измеренный в отрицательном полюсе бестрансформаторного умножителя напряжения на 6;

Ig - ток в цепи "сетки - точка ноль вольт" (в разрыв подключен миллиамперметр на 500mA положительным полюсом к точке "0В");

Uпит - напряжение на полюсах умножителя с учётом просадки в зависимости от нагрузки;

Pвых - выходная полезная мощность в режиме нажатия на эквиваленте, измеренная КСВ-метром VEGA SX-200;

Ку - коэффициент усиления по мощности - соотношение выходной мощности ко входной;

КПД = Pвых / (Uпит x I в "+"/1000)

Согласно моим измерениям, ток сеток составил примерно четверть от общего тока в любом из полюсов умножителя. Кстати, в случае с бестрансформаторным источником высокого напряжения, с точки зрения безопасности, нет разницы, в каком полюсе включать этот прибор (в классических блоках питания рекомендуется устанавливать миллиамперметр в минусовую цепь, чтобы иметь на приборе минимальный потенциал относительно корпуса усилителя), т.к. в любом случае, он будет находится под половинным потенциалом умножителя напряжения относительно шасси (корпуса).

Так же, отчетливо заметно, что когда "холодная" емкость П-контура имеет меньшее значение, нежели в резонансе - ток сеток меньше того значения, которое устанавливается при настройке П-контура в резонанс. В режиме, когда "холодная" емкость П-контура имеет большее значение нежели в резонансе - ток сеток существенно вырастает.

Еще одно интересное и вполне объяснимое наблюдение: если отключить сетевое напряжения на входе умножителя и нажать на ключ - начинают разряжаться конденсаторы умножителя, мощность и ток в полюсах умножителя начинает падать, а ток сеток начинает расти. Рост продолжается приблизительно до 400mA (в моем случае) и, очевидно, зависит от уровня раскачки по входу. Рост сеточного тока происходит потому, что по мере уменьшения анодного напряжения, все больше и больше электронов, испускаемых катодом, начинают перехватываться сеткой. В такой ситуации можно легко превысить предельно допустимую рассеиваемую мощность управляющей сетки, что приведет к ее перегреву. Потому, делать разряд емкостей источника питания таким способом не рекомендуется...

Следующим шагом, я хочу посмотреть ток в разрыве цепи стабилитронов смещения, амплитуду и форму сигнала на катодах, чтобы определить максимальные значения напряжения и посчитать мгновенное значение рассеиваемой сетками мощности, учитывая ток сеток. Ток сеток будет иметь импульсную прерывистую форму и потому посчитать рассеиваемую мощность по обычным формулам здесь не получится, но определить ее пиковые значения будет возможно... Так же, вычтя значение напряжения смещения из амплитудного значения сигнала, можно будет увидеть, разность потенциалов, при которых лампа уже работает в классе AB2.

17.12.2016

Лабораторная работа на предмет контроля токов анода, катода и сетки. Измерительные приборы были включены согласно этой схеме:


Т.к. в случае с бестрансформаторным питанием мы имеем два абсолютно идентичных по потенциалу но разных по знаку полюса - рекомендую разделить ограничительные резисторы на оба полюса умножителя (на рис. указано только в положительном полюсе) и ограничить ток разряда в случае прострела в лампе или КЗ по другим цепям значением 40-50А. Так же, защита измерительной головки встречно-параллельными диодами и емкостью показана только для нижнего на рисунке прибора. Стрелками показано направление протекания тока (от плюса к минусу).

Ток в плюсовом и минусовом полюсе умножителя напряжения - идентичный. Ток в цепи стабилитронов (ток катода) - сумма токов источника питания (анода) и тока сетки (в разрыв цепи "сетка - точка ноль вольт"). Так, при токе катодов двух ламп около 500mA, ток в цепи источника питания составил 420mA, а в цепи сеток - 84mA. Измерение проведено при выходной мощности около 370Вт. Если контролировать ток в цепи катода - нужно ставить измерительный прибор на предел 750mA или 1A. Так же, можно добавить, что при настройке П-контура, провал анодного тока около 15% заметен именно по измерителю в цепи источника питания (ток анода). Ток катода остаётся практически постоянным и зависит от уровня раскачки по входу.

Оставив только прибор для измерения тока анода и несколько увеличив раскачку, посмотрел сигнал на выходе трансивера, на входе усилителя после согласующего П-контура и на одной из обмоток накального трансформатора в цепи катода (катод - точка соединения цепи стабилитронов смещения). Предполагаю, что асимметрия синусоиды на последнем фото связана с тем, что нагрузка для сигнала на положительном полупериоде гораздо выше, чем на отрицательном (лампа заперта). Отрицательная полу-волна сигнала показывает амплитудный уровень около 42В при том, что напряжение смещения на катоде составляет +23В. Т.е. часть полу-периода лампа работает с током сетки. Учитывая сеточный ток 100mA и разностную амплитуду в 19В, получаем мгновенное значение рассеиваемой мощности при настройке П-контура в резонанс - 1,9Вт на две лампы, что значительно ниже предельного значения.

Хочу обратить внимание, что подключая осциллограф к усилителю, блок питания которого выполнен по бестрансформаторной схеме, категорически запрещается допускать контакт корпуса или щупов прибора с шасси (корпусом) усилителя. Так же, помните, что корпус осциллографа и некоторые элементы органов управления будут находиться под высоким потенциалом относительно земли и прикосновение к ним опасно...

Некоторые соображения по поводу возможных вариантов анодного напряжения и допустимых токов анода при использовании одной и двух ламп ГИ-7Б.

Рассмотрим вариант с одной лампой. Анодное напряжение - 1750В под нагрузкой 300mA (умножение на 6). Эквивалентное сопротивление лампы - около 2700Ом (по формуле И.Гончаренко). Подводимая к аноду мощность - 525Вт. КПД триода по схеме с общей сеткой - 0,45...0,55. Возьмем максимальное значение. Тогда, полезная мощность составит около 290Вт, а на аноде будет рассеиваться 235Вт.

Раскачиваем анод до тока 400mA. Ua=1700В (с просадкой). Rоэ=2000Ом (П-контур на ВЧ-бендах реализовать проще). Pпод.=680Вт. Pотд.=374Вт. На аноде будет рассеиваться 306Вт. Однако, эмиссионная способность катода у нас допускает максимальный ток 0,6А. Предполагаю, что учитывая ток сетки, мы получим близкое к предельному значение... Т.е. для лампы этот режим будет заметно тяжелее. Если же, КПД окажется минимальным - еще и предельный режим для анода будет превышен.

Отсюда, рискну предположить, что при таком анодном напряжении, середина между двумя рассмотренными вариантами будет оптимальной для одной лампы...

Рассмотрим следующий вариант - умножение сетевого на 8. При потребляемом токе 0,3А (ток анода) и напряжении около 2350В (под нагрузкой) - к лампе подводим более 700Вт мощности, а мощность, рассеиваемая анодом составит почти предельную величину. Однако, эквивалентное сопротивление лампы получается более 3700Ом и реализовать П-контур на ВЧ-бендах уже будет не реально...

Увеличив ток анода до 400mA, мы подведем к аноду около 900Вт. Рассеиваемая анодом мощность превысит предельно допустимую и лампы на долго не хватит. Предполагаю, что и сигнала хорошего в таком режиме не получить...

В таком режиме могли бы работать две лампы и полезная мощность составит около 500Вт. Однако, реализовать П-контур с добротностью не более 16-ти на ВЧ-бендах вряд ли получится.

Следующий режим - ток анода двух ламп 600mA, анодное напряжение под этой нагрузкой - 2300В. Roэ=1800. Полезная мощность - около 700Вт и примерно чуть меньше будет рассеиваться на анодах. Предполагаю, что это будет оптимальный максимум, на который способны две ГИ-7Б.

Т.е. я веду к тому, что, на мой взгляд, при умножение на 6 не стоит добиваться мощности более 400Вт при общем токе анодов двух ламп до 450mA. Если использовать умножение на 8, то верхняя планка полезной мощности - около 700Вт при токе анодов не более 600mA. В обоих случаях вполне реализуем П-контур.

Разумеется, что и при умножении на 6 можно качнуть аноды до 600mA, однако, это не имеет смысла, т.к. реальный прирост полезной мощности будет несущественным... Кроме того, сетки будут работать в более тяжелом режиме. Здесь есть ещё и другой момент - ток катодов будет составлять около 800мА и вероятность выхода из строя стабилитронов цепи смещения увеличивается...

(прим. 04.12.2018 в данный момент я использую усилитель именно при таких энергетических показателях, опять же, в экспериментальных целях)

Что касается эффекта от данных вариантов усилителей в эфире, то относительно стандартной мощности трансивера 100Вт, усилитель мощности на 400Вт дает прибавку на 1 балл по шкале S-метра, 700Вт - чуть меньше полутора баллов. Разумеется, когда вы будете демонстрировать разницу между подаваемой с трансивера мощностью (а она будет существенно ниже, чем стандартные 100Вт) и выходной с усилителя - разница будет гораздо заметнее. Например, в моем случае при Ку по мощности около 16-ти - это 2 балла по шкале S-метра.

02.01.2017

Всех с наступившим Новым годом!

Поработав какое-то время с усилителем, обратил внимание, что система вентиляции в данном конструктиве не справляется со своей функцией. Решил несколько переделать подвес ламп. Отказался от способа крепления ламп за сеточное кольцо, убрав при этом дюралевую пластину с отверстиями, через которые к анодам проходило недостаточно воздуха от вентиляторов. На самом деле, оси вентиляторов находятся несколько дальше друг от друга и, по хорошему, лампы стоило бы раздвинуть примерно на сантиметр, но это переделывать уже не буду.

Закрепил лампы за аноды, чуть пододвинул их к вентиляторам при этом, на столько же отодвинув их от стеклотекстолитового экрана.


Думаю, тепловой режим ламп теперь будет более приемлемым.


06.01.2017

Одна лампа приказала долго жить. Симптоматика была такая: возрос ток покоя раза в полтора потом стали гореть предохранители в блоке питания и сильно разогревался накальный трансформатор. Сопротивление накала одной лампы составило 0,6Ом, против 2,7Ом у другой лампы.

RZ3DLL любезно передал в дар пару ГИ-6Б с хранения, которые в тот же день были установлены взамен старых ламп. Стабилитроны цепи смещения установил на небольшие радиаторы, по совету старших товарищей.

Появилась прекрасная возможность сравнить две модели ламп - ГИ-7Б и ГИ-6Б в работе на КВ-бендах...

Переделана коммутация накальных обмоток трансформатора ТПП-268. Ранее накальное напряжение составляло почти 14В (до того как одна лампа вышла из строя). Сейчас накальное напряжение составляет 12,3В. Так же, теперь буду более внимательно относиться к напряжению смещения. Ток покоя планирую устанавливать по 30-40мА на лампу.

07.01.2017

В данный момент, лампы 76-го года подвергаются тренировке после длительного хранения. Подержу 4-6 часов под накалом (с обдувом), потом, час под пониженным анодным напряжением 1240В (по две ступени с умножителя на 6), потом час под низким током покоя, далее - час под анодным 1860В и, в конце, час под номинальным током покоя. После тренировки ламп, можно попробовать поработать в эфире с небольшой раскачкой и постепенно вывести усилитель на проектную мощность 400Вт...

Лабораторная работа - ГИ-7Б в разрезе .

08.01.2017

При токе 200мА в режиме нажатия, при 6Вт на входе, на выходе получается 190Вт. Ку по мощности получается более тридцати. Общее впечатление от работы ламп вполне приятное. Лампы не перегреваются, накальный трансформатор - тёплый.

Еще интересное наблюдение. Во время тренировки, за час простоя под током покоя, последний вырос с 78мА до 98мА. В настоящий момент, ток покоя составляет около 60мА при включении. При длительной работе он может вырасти не более чем до 80мА на две лампы.

Прим. 09.12.2018

В цепи смещения сейчас стоит три стабилитрона Д815А и один - Д815Б, дополнительный "запирающий" стабилитрон - Д817А (установлен без радиатора). Ток покоя - 110мА.

03.12.2018

В процессе поиска способа раскачки данного усилителя до желаемых 400Вт и более, предпринял попытку усиливать сигнал в несколько этапов. Получился целый паровоз, со своими минусами, но вполне имеющий право на существование. Кроме того, найденный способ был мне интересен с теоретической точки зрения и возможности испытать теорию на практике.

Цепочка прохождения и усиления сигнала выглядит следующим образом: со смесителя (IMD3 более 50дБ) сигнал идёт на усилитель (IMD3 около 42дБ при мощности менее 1Вт), далее на по схеме с общим катодом (PA1 на рис.ниже) и на 2xГИ-6Б (PA2 на рис.ниже). При токе 0,6А и 1700В анодного напряжения у оконечного усилителя на выходе получается чуть более 500Вт. Поскольку, система находится в процессе оптимизации, окончательные параметры по линейности на данный момент не получены. Желаемый результат - не менее 30дБ. Но уже сейчас можно сказать, что оконечный усилитель ухудшает линейность совсем незначительно, приблизительно на 2-3дБ, что лишний раз подтверждает факт того, что усилители с ОС имеют бо льшую на 6дБ линейность за счёт отрицательной обратной связи. Разумеется, речь идёт о правильно выбранном режиме работы и оптимальной получаемой мощности. Следовательно, подав на такой усилитель достаточно линейный сигнал (36-38дБ), можно будет получить заветные 34дБ!


В чём сложность согласования данной системы из двух ламповых усилителей? Оконечный усилитель выполнен по схеме с общими сетками а это значит, что его входное сопротивление зависит от частоты усиливаемого сигнала, тока анода выходных ламп и положения настройки конденсаторов П-контура. Кроме того, без принятия специальных мер (входной диапазонный П-контур с низкой добротностью), входное сопротивление усилителя с ОС меняется от малого (в данном случае, менее 50Ом) до бесконечно большого каждый период сигнала. Об этом подробно написано у И.Гончаренко . Но, даже имея входной П-контур оконечного усилителя, у нас есть ещё два - ВКС каждого лампового УМ. Словом, в этом уравнении имеется множество неизвестных...

Решаю я эту проблему следующим образом. Первый усилитель настраивается на эквивалент на нужной частоте при мощности несколько меньшей нежели та, которая предполагается для последующей раскачки оконечного усилителя. Контролируется линейность сигнала. После этого, положения конденсаторов П-контура не изменяем. Если подключить в разрыв между усилителем и эквивалентом КСВ-метр, то он должен показать значение, близкое к единице. Для коммутации узлов я использую стандартные кабели длиной около 0.9м. Далее, в цепочке оставляем КСВ-метр, а вместо эквивалента нагрузки подключаем входную цепь оконечного усилителя. Входная цепь согласования представляет из себя обычный П-контур с низкой добротностью. Предварительно, элементы данного П-контура рассчитываем на калькуляторе И.Гончаренко.

В различных источниках для входных П-контуров рекомендуются значения добротности в пределах 2-5. Чем ниже добротность, тем в более широком диапазоне частот не потребуется дополнительное согласование, но и входное сопротивление будет изменяться в более широких пределах, что не есть хорошо... Для двух ГИ-7(6)Б приблизительное значение входного сопротивления составит около 35Ом. Пример расчёта элементов П-контура с добротностью 5 для диапазона 40м:


При выполнении данного узла, можно сразу установить дополнительные подстроечные конденсаторы, что значительно облегчит дальнейшее согласование цепей.

И, наконец, переходим к настройке ВКС оконечного усилителя мощности (на эквивалент). Постепенно, доводим раскачку оконечного усилителя до проектной. Разумеется, это потребует перенастройки и первого усилителя. Определив предварительные настройки ёмкостей оконечного усилителя, смотрим на КСВ-метр. Скорее всего, показания будут отличаться от единицы. Здесь необходимо переходить к настройке входного П-контура. В моём случае оказалось, что при подаче 80Вт на вход, из-за не оптимального согласования, мощность сигнала падала вдвое, при этом, на выходе оконечного усилителя было около 400Вт. Это говорило о том, что фактическое входное сопротивление усилителя было ниже расчётного. Добавляя ёмкость во входной П-контур со стороны лампы, данный дисбаланс сокращался и КСВ, кстати, приближался к заветному значению. При значениях КСВ близких к единице потребуется меньшая мощность раскачки, нежели чем при плохом согласовании, что положительно скажется на линейности сигнала. Однако, нельзя её бесконечно уменьшать, т.к. это приведёт к слишком высокому эквивалентному сопротивлению лампы (Roe) усилителя PA1, он будет работать в недонапряжённом режиме по причине невозможности трансформации сопротивления штатными элементами П-контура и т.п.. Например, одно дело брать с двух полтинников по схеме с ОК 60-80Вт и совсем другое - 30-40Вт. В последнем случае, анодный ток будет слишком мал, штатной холодной ёмкости в П-контуре уже будет недостаточно, настроиться в резонанс не получится и т.п. Переход на одну лампу потребует уменьшения анодного напряжения с целью получения нормально значения Roe, что эквивалентно фактической переделке усилителя...

Мой КСВ-метр VEGA SX-200, установленный в разрыв между усилителями, позволяет измерять проходящую через него мощность сигнала. При достаточном согласовании, при переключении оконечного усилителя в режим усиления, мощность сигнала не должна значительно отличаться от исходной в режиме "обход". Это будет говорить о том, что настроенный ранее промежуточный усилитель PA1 на эквивалент, по прежнему видит нагрузку 50Ом.

При своих недостатках (большое кол-во элементов, сложность согласования, инерционность в плане перестройки по диапазону), данный способ усиления сигнала имеет свои преимущества: хороший запас по мощности раскачки оконечного усилителя и достаточно высокая линейность сигнала. Ранее, получить те же параметры линейности сигнала с применением транзисторных промежуточных усилителей мне так и не удалось...

Продолжение следует...

Усилитель мощности на IRF630 для КВ радиостанции за основу усилителя были взяты IRF630 как наиболее дешёвые и распространенные транзисторы. Цена их колеблется от 0,45 до 0,7 $.
Их основные характеристики: UCи макс = 200 В; 1с макс. = 9 А; U3и макс = ±20 В; S = 3000 мА/В; Сзи = 600…850 пФ (в зависимости от фирмы изготовителя); Сси – не более 250 пФ (реально измеренная Сси на 10 транзисторах разных фирм производителей – около 210 пФ); рассеиваемая мощность Рс – 75 Вт.

Транзисторы IRF630 предназначены для работы в импульсных схемах (развёртки мониторов компьютеров, импульсные блоки питания), но при выведении их в режим, близкий к линейному, дают хорошие показатели и в связной аппаратуре. По результатам моих «лабораторных работ» частотная характеристика этих транзисторов, если пытаться скомпенсировать в максимальной степени входную ёмкость, не хуже, чем у КП904. Во всяком случае, устанавливая их вместо КП904, я получал гораздо лучшие результаты как по АЧХ, линейности и усилению, так и по надёжности работы.

Усилитель мощности на IRF630 для КВ радиостанции испытывался при напряжении питания 36-50 В, но наиболее надёжно и эффективно он работал при напряжении питания 40 В, от стабилизированного источника. Расчёт усилителя производился под выходную мощность 80 Вт, чтобы сохранить надёжность работы, хотя с него можно было «выкачивать» и более 100 Вт. Правда надёжность работы транзисторов падала.

Учитывая входную ёмкость IRF630 и тот факт, что эти транзисторы управляются не током, а напряжением, в отличие от биполярных. В данном усилителе не удалось устранить некоторый завал частотной характеристики выше 18 МГц (Рвых 30МГц; 0,7РВых макс) хотя схемотехнические меры принимались. Но это присуще многим схемам, в том числе и на биполярных транзисторах.

Линейные характеристики усилителя хорошие, КПД; 55%, что подтверждает данные, которые приводились в упомянутой выше статье. Самое главное – это дешевизна комплектующих деталей, в том числе и транзисторов. Которые можно свободно приобрести на радиорынках и в фирмах, занимающихся ремонтом компьютерных мониторов и блоков питания. Для получения расчетной мощности на вход усилителя необходимо подать сигнал не более 5 В (эфф.) на нагрузке 50 Ом.

При необходимости коэффициент усиления можно снизить. Уменьшив сопротивление R1, R12, R13 (рис.), при этом остальные характеристики практически не изменятся. Но не стоит забывать, что напряжение пробоя затвора транзисторов не превышает 20 В, т.е. Uвх.эфф.макс. нужно умножить на 1,41.

На VT1 собран предварительный усилитель, который охвачен двумя цепями ООС – R1, С6 (линеаризует работу транзистора и предотвращает самовозбуждение за счет уменьшения коэффициента усиления) и R5, С7* (частотнозависимая ООС, корректирующая АЧХ на «верхних» диапазонах). На VT2, VT3 собран двухтактный оконечный каскад с раздельными цепями установки смещения и аналогичными первому каскаду цепями ООС.

П-фильтры L2, С32, СЗЗ, С37, С38 и L3, С35, С36, С40, С41 служат для приведения выходного сопротивления VT2, VT3, которое составляет около 15 Ом, к 25 Ом. Одновременно это ФНЧ с частотой среза около 34 МГц. После трансформатора сложения мощностей ТЗ выходное сопротивление усилителя становится равным 50 Ом. VD1-VD6 – детектор системы ALC и индикатора перенапряжений в стоковой цепи выходных транзисторов, собранного на VD7, VD8, R21, С39 (при достижении пикового напряжения на стоках VT2, VT3 более 50 В, «загорается» светодиод VD7, что свидетельствует о повышенном КСВ).

При задействовании управляющего напряжения для цепей ALC, которое будет изменять уровень мощности. В зависимости от уровня напряжения на выходе, светодиод не будет «загораться». В любом случае нужно помнить, что выходные каскады на транзисторах нужно подсоединять к антенне через согласующее устройство. Ведь антенна – это не активная нагрузка, и на каждом из диапазонов ведёт себя по разному, даже если и написано, что работает на всех диапазонах.

Монтаж усилитель мощности на IRF630 для КВ радиостанции выполнен на плате из двухстороннего стеклотекстолита, на которой скальпелем вырезаны прямоугольные контактные площадки для узлов схемы и «общего провода». По контуру платы оставлена полоска металлизации «общего провода».

Контактные площадки «общего провода» соединяются сквозными перемычками со сплошной металлизацией второй стороны платы через 2…3 см. Детали располагают в том порядке, как указано на схеме (рис.). Таким способом было изготовлено около десятка усилителей. В процессе наладки они показали хорошую повторяемость, качественную и надёжную работу.

Плата коммутации усилитель мощности на IRF630 для КВ радиостанции:

выполняется любым способом и соединяется проводами с усилителем, реле располагаются у входа и выхода усилителя, а управление ими подводится к коммутационной плате. Подстроенные резисторы R1, R2, R3 (рис.2) нужно применять многооборотные, предварительно установив их движки в нижнее по схеме положение. Для того, чтобы при установке тока покоя резким движением не вывести из строя транзисторы.

В истоковые цепи всех транзисторов (рис.1) введены резисторы, которые уменьшают их крутизну по «постоянке», и тем самым дополнительно их защищают. Эти меры были приняты после того, как, набравшись опыта работы с такими транзисторами и выбросив десятка полтора в мусор, я понял, что такая крутизна по постоянному току не нужна. Установка начального тока каждого выходного транзистора в отдельности сделана для того, чтобы не было надобности перебирать кучу транзисторов.

Предварительно устанавливают токи покоя VT1 около 150 мА и VT2, VT3 – по 60-80 мА, но одинаковые в каждом плече, а более точно – с помощью анализатора спектра. Но, как правило, достаточно просто установить правильно токи покоя.

Теперь поговорим о том, как нужно устанавливать транзисторы. Корпус этих транзисторов (ТО-220) напоминает «пластмассовый» КТ819 с выводом стока на металлическую подложку и металлический фланец. Этого не нужно бояться и крепить их на радиатор можно рядом с платой усилителя мощности по разные стороны через слюдяные прокладки. Но слюда должна быть качественной и предварительно обработана теплопроводящей очищенной от песка пастой. Автор заостряет внимание на этом в связи с тем, что к слюде подводится не только постоянное напряжение, а и напряжение ВЧ.

Конструктивная ёмкость крепежа через слюду входит в ёмкость П-фильтров, так же впрочем, как и выходная емкость транзисторов. Транзисторы лучше прижимать к радиатору не через отверстие во фланце, а дюралевой пластиной, прижимающей два выходных транзистора сразу, что обеспечивает лучшую теплоотдачу и не нарушает слюду. Такой же крепёж и у VT1, только в начале платы.

Трансформаторы мотаются на кольцах из феррита марки НН и, в зависимости от наличия, проницаемостью от 200 до 1000. Размеры колец должны соответствовать мощности, я применил 600НН К22х10,5х6,5. Намотка производилась проводом ПЭЛШО-0,41 для Т1 (5 витков в три провода, 4 скрутки на сантиметр) и ПЭЛ-ШО-0,8 для Т2 (4 витка в два провода, 1 скрутка на сантиметр), ТЗ (6 витков в два провода, 1 скрутка на сантиметр). В связи с тем, что не всегда можно найти провод нужного диаметра в шелковой изоляции. Намотку также можно выполнить проводом ПЭВ-2, обязательно «прозвонив» обмотки между собой после намотки трансформатора.

Кольца перед намоткой обматывают слоем лакоткани.

Данные обмоток для каждого трансформатора зависят от марки и типоразмера применяемых колец и в случае применения иных колец их легко можно высчитать по формуле 12 [С.Г.Бунин и Л.П.Яйленко. «Справочник радиолюбителя-коротковолновика», Киев, «Техника», 1984 г., стр.154], где значение Rk для Т1 – 50, для Т2 -15, для ТЗ – 25.

L2, L3 имеют по 5 витков провода ПЭВ-1,5 на оправке диаметром 8 мм, длина намотки 16 мм. Если эти данные полностью сохранить, подстройку фильтров производить практически не нужно. L1 – стандартный дроссель 100 мкГн должен выдерживать ток не менее 0,3 А (например, Д-0,3). Конденсаторы в выходных ФНЧ применяются трубчатые или любые высокочастотные с соответствующей реактивной мощностью и рабочим напряжением. Аналогичные требования и к С26 -С31.

Все остальные конденсаторы должны быть также рассчитаны на соответствующие рабочие напряжения. После включения и выставления всех режимов по постоянному току, подключают нагрузку и корректируют АЧХ усилителя с помощью ГСС и лампового вольтметра или измерителя АЧХ (автор применял Х1-50). Подбором С7, С10, С19-С22 можно корректировать характеристику в области 14-30 МГц (рис.1). Для «выравнивания» Рвых на ВЧ диапазонах, возможно, дополнительно понадобится подобрать количество битков у Т1 и Т2.